848 research outputs found

    Implicit Euler numerical simulations of sliding mode systems

    Get PDF
    In this report it is shown that the implicit Euler time-discretization of some classes of switching systems with sliding modes, yields a very good stabilization of the trajectory and of its derivative on the sliding surface. Therefore the spurious oscillations which are pointed out elsewhere when an explicit method is used, are avoided. Moreover the method (an {\em event-capturing}, or {\em time-stepping} algorithm) allows for accumulation of events (Zeno phenomena) and for multiple switching surfaces (i.e., a sliding surface of codimension 2\geq 2). The details of the implementation are given, and numerical examples illustrate the developments. This method may be an alternative method for chattering suppression, keeping the intrinsic discontinuous nature of the dynamics on the sliding surfaces. Links with discrete-time sliding mode controllers are studied

    Analysis of explicit and implicit discrete-time equivalent-control based sliding mode controllers

    Get PDF
    Different time-discretization methods for equivalent-control based sliding mode control (ECB-SMC) are presented. A new discrete-time sliding mode control scheme is proposed for linear time-invariant (LTI) systems. It is error-free in the discretization of the equivalent part of the control input. Results from simulations using the various discretized SMC schemes are shown, with and without perturbations. They illustrate the different behaviours that can be observed. Stability results for the proposed scheme are derived

    Dissipative Systems Analysis and Control, Theory and Applications: Addendum/Erratum

    No full text
    This is an up-dated addendum/erratum to the second edition of the book Dissipative Systems Analysis and Control, Theory and Applications, Springer-Verlag London, 2nd Edition, 2007

    Dissipative Systems Analysis and Control, Theory and Applications: Addendum/Erratum

    Get PDF
    This is an up-dated addendum/erratum to the second edition of the book Dissipative Systems Analysis and Control, Theory and Applications, Springer-Verlag London, 2nd Edition, 2007

    Stochastic perturbation of sweeping process and a convergence result for an associated numerical scheme

    Get PDF
    Here we present well-posedness results for first order stochastic differential inclusions, more precisely for sweeping process with a stochastic perturbation. These results are provided in combining both deterministic sweeping process theory and methods concerning the reflection of a Brownian motion. In addition, we prove convergence results for a Euler scheme, discretizing theses stochastic differential inclusions.Comment: 30 page

    Identification of delays and discontinuity points of unknown systems by using synchronization of chaos

    Full text link
    In this paper we present an approach in which synchronization of chaos is used to address identification problems. In particular, we are able to identify: (i) the discontinuity points of systems described by piecewise dynamical equations and (ii) the delays of systems described by delay differential equations. Delays and discontinuities are widespread features of the dynamics of both natural and manmade systems. The foremost goal of the paper is to present a general and flexible methodology that can be used in a broad variety of identification problems.Comment: 11 pages, 3 figure

    On negative imaginary synthesis via solutions to Riccati equations*

    Get PDF

    On the control of complementary-slackness juggling mechanical systems

    Get PDF
    International audienceThis paper studies the feedback control of a class of complementary-slackness hybrid mechanical systems. Roughly, the systems we study are composed of an uncontrollable part (the "object") and a controlled one (the "robot"), linked by a unilateral constraint and an impact rule. A systematic and general control design method for this class of systems is proposed. The approach is a nontrivial extension of the one degree-of-freedom (DOF) juggler control design. In addition to the robot control, it is also useful to study some intermediate controllability properties of the object's impact Poincaré mapping, which generally takes the form of a non-linear discrete-time system. The force input mainly consists of a family of dead-beat feedback control laws, introduced via a recur-sive procedure, and exploiting the underlying discrete-time structure of the system. The main goal of this paper is to highlight the role of various physical and control properties characteristic of the system on its stabilizability properties and to propose solutions in certain cases

    On the Control of a One Degree-of-Freedom Juggling Robot

    Get PDF
    International audienceThis paper is devoted to the feedback control of a one degree-of-freedom (dof) juggling robot, considered as a subclass of mechanical systems subject to a unilateral constraint. The proposed approach takes into account the whole dynamics of the system, and focuses on the design of a force input. It consists of a family of hybrid feedback control laws, that allow to stabilize the object around some desired (periodic or not) trajectory. The closed-loop behavior in presence of various disturbances is studied. Despite good robustness properties, the importance of good knowledge of the system parameters, like the restitution coefficient, is highlighted. Besides its theoretical interest concerning the control of a class of mechanical systems subject to unilateral constraints, this study has potential applications in non-prehensile manipulation, extending pushing robotic tasks to striking-and-pushing tasks
    corecore