24 research outputs found

    Ionizing radiation and inhibition of angiogenesis in a spontaneous mammary carcinoma and in a syngenic heterotopic allograft tumor model: a comparative study

    Get PDF
    BACKGROUND: The combined treatment modality of ionizing radiation (IR) with inhibitors of angiogenesis (IoA) is a promising treatment modality based on preclinical in vivo studies using heterotopic xeno- and allograft tumor models. Nevertheless reservations still exist to translate this combined treatment modality into clinical trials, and more advanced, spontaneous orthotopic tumor models are required for validation to study the efficacy and safety of this treatment modality. FINDINGS: We therefore investigated the combined treatment modality of IR in combination with the clinically relevant VEGF receptor (VEGFR) tyrosine kinase inhibitor PTK787 in the MMTV/c-neu induced mammary carcinoma model and a syngenic allograft tumor model using athymic nude mice. Mice were treated with fractionated IR, the VEGFR-inhibitor PTK787/ZK222584 (PTK787), or in combination, and efficacy and mechanistic-related endpoints were probed in both tumor models. Overall the treatment response to the IoA was comparable in both tumor models, demonstrating minimal tumor growth delay in response to PTK787 and PTK787-induced tumor hypoxia. Interestingly spontaneously growing tumors were more radiosensitive than the allograft tumors. More important combined treatment of irradiation with PTK787 resulted in a supraadditive tumor response in both tumor models with a comparable enhancement factor, namely 1.5 and 1.4 in the allograft and in the spontaneous tumor model, respectively. CONCLUSIONS: These results demonstrate that IR in combination with VEGF-receptor tyrosine kinase inhibitors is a valid, promising treatment modality, and that the treatment responses in spontaneous mammary carcinomas and syngenic allografts tumor models are comparable

    Evaluation of imaging techniques for the assessment of tumour progression in an orthotopic rat model of malignant pleural mesothelioma

    Get PDF
    OBJECTIVES An orthotopic rat tumour recurrence model for malignant pleural mesothelioma (MPM) provides clinical similarity to patients and is useful for drug testing combined with surgical intervention. Importantly, a reliable imaging method is required allowing for noninvasive and repetitive evaluation of the tumour load. We compared the tumour load assessed by bioluminescence and magnetic resonance imaging (MRI) to the macroscopic tumour volume as a reference standard. METHODS A total of 500 000 syngeneic rat MPM cells transfected with luciferase were implanted underneath the parietal pleura of immunocompetent rats (n = 13). From the second day after implantation, bioluminescence measurements of the tumour load expressed as the maximum bioluminescent intensity (photon/second) were performed daily after intraperitoneal injection of the luciferase substrate, d-luciferin, to observe the first occurrence of tumour. Six days after the first detection of tumour, bioluminescence, MRI and macroscopic tumour volume measurement were conducted. For MRI, a 4.7-Tesla small animal imager equipped with a (1)H whole-body rat coil was employed using T2-weighted fast spin-echo sequences. Tumour burden (mm(3)) was quantified from magnetic resonance transverse images by two independent readers by manual segmentation. Finally, the tumour burden assessed by bioluminescence and MRI was correlated (Pearson's correlation) with the macroscopic measurement of tumour (ellipsoid) volume. RESULTS In all rats, a single tumour nodule was found at the inoculation site with a median macroscopic volume of 46 mm(3) (18-377 mm(3)). For tumour burden quantification of MRIs, we observed good interobserver correlation (R(2) = 0.81, P < 0.0001) as well as significant association with the macroscopic tumour volume (R(2) = 0.59, P = 0.002). However, the signal intensity of bioluminescence did not correspond to the macroscopic tumour volume (R(2) = 0.01, P = 0.76). CONCLUSIONS MRI is a reliable and reproducible noninvasive in vivo imaging method for MPM tumour burden assessment for the present MPM mode

    Combined Treatment Strategies for Microtubule Stabilizing Agent-Resistant Tumors

    Get PDF
    Background: Resistance to microtubule-stabilizing agents is a major hurdle for successful cancer therapy. We investigated combined treatment of microtubule-stabilizing agents (MSAs) with inhibitors of angiogenesis to overcome MSA resistance. Methods: Treatment regimens of clinically relevant MSAs (patupilone and paclitaxel) and antiangiogenic agents (everolimus and bevacizumab) were investigated in genetically defined MSA-resistant lung (A549EpoB40) and colon adenocarcinoma (SW480) tumor xenografts in nude mice (CD1-Foxn1, ICRnu; 5-14 per group). Tumor growth delays were calculated by Kaplan-Meier analysis with Holm-Sidak tests. All statistical tests were two-sided. Results: Inhibition of mTOR-kinase by everolimus only minimally reduced the proliferative activity of β tubulin-mutated lung adenocarcinoma cells alone and in combination with the MSA patupilone, but everolimus inhibited expression and secretion of vascular endothelial growth factor (VEGF) from these cells. mTOR-kinase inhibition strongly sensitized tumor xenografts derived from these otherwise MSA-resistant tumor cells to patupilone. Tumors treated with the combined modality of everolimus and patupilone had statistically significantly reduced tumor volume and stronger tumor growth delay (16.2±1.01 days) than control- (7.7±0.3 days, P = .004), patupilone- (10±0.97 days, P = .009), and everolimus-treated (10.6±1.4 days, P = .014) tumors. A combined treatment modality with bevacizumab also resensitized this MSA-refractory tumor model to patupilone. Treatment combination also strongly reduced microvessel density, corroborating the relevance of VEGF targeting for the known antivasculature-directed potency of MSA alone in MSA-sensitive tumor models. Resensitization to MSAs was also probed in P glycoprotein-overexpressing SW480-derived tumor xenografts. Different bevacizumab regimens also sensitized this otherwise-resistant tumor model to clinically relevant MSA paclitaxel. Conclusions: A treatment combination of MSAs with antiangiogenic agents is potent to overcome tumor cell-linked MSA resistance and should be considered as strategy for MSA-refractory tumor entitie

    The microtubule stabilizer patupilone counteracts ionizing radiation-induced matrix metalloproteinase activity and tumor cell invasion

    Get PDF
    BACKGROUND: Ionizing radiation (IR) in combination with microtubule stabilizing agents (MSA) is a promising combined treatment modality. Supra-additive treatment responses might result from direct tumor cell killing and cooperative indirect, tumor cell-mediated effects on the tumor microenvironment. Here we investigated deregulation of matrix metalloproteinase (MMP) activity, as an important component of the tumor microenvironment, by the combined treatment modality of IR with the clinically relevant MSA patupilone. METHODS: Expression, secretion and activity of MMPs and related tissue inhibitors of metalloproteinases (TIMPs) were determined in cell extracts and conditioned media derived from human fibrosarcoma HT1080 and human glioblastoma U251 tumor cells in response to treatment with IR and the MSA patupilone. Treatment-dependent changes of the invasive capacities of these tumor cell lines were analysed using a Transwell invasion assay. Control experiments were performed using TIMP-directed siRNA and TIMP-directed inhibitory antibodies. RESULTS: Enzymatic activity of secreted MMPs was determined after treatment with patupilone and irradiation in the human fibrosarcoma HT1080 and the human glioblastoma U251 tumor cell line. IR enhanced the activity of secreted MMPs up to 2-fold and cellular pretreatment with low dose patupilone (0.05-0.2 nM) counteracted specifically the IR-induced MMP activity. The cell invasive capacity of HT1080 and U251 cells was increased after irradiation with 2 Gy by 30% and 50%, respectively, and patupilone treatment completely abrogated IR-induced cell invasion. Patupilone did not alter the level of MMP expression, but interestingly, the protein level of secreted TIMP-1 and TIMP-2 was lower after combined treatment than after irradiation treatment alone. Furthermore, siRNA depletion of TIMP-1 or TIMP-2 prevented IR-mediated induction of MMP activity and cell invasion. CONCLUSIONS: These results indicate that patupilone counteracts an IR-induced MMP activation process by the reduction of secreted TIMP-1 and TIMP-2 proteins, which are required for activation of MMPs. Since IR-induced MMP activity could contribute to tumor progression, treatment combination of IR with patupilone might be of great clinical benefit for tumor therapy

    Ionizing radiation induces tumor cell lysyl oxidase secretion

    Get PDF
    BACKGROUND: Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor β and matrix metalloproteinases, among others, to promote tumor progression. Lysyl oxidase is known to play an important role in hypoxia-dependent cancer cell dissemination and metastasis. Here, we investigated the effects of IR on the expression and secretion of lysyl oxidase (LOX) from tumor cells. METHODS: LOX-secretion along with enzymatic activity was investigated in multiple tumor cell lines in response to irradiation. Transwell migration assays were performed to evaluate invasive capacity of naïve tumor cells in response to IR-induced LOX. In vivo studies for confirming IR-enhanced LOX were performed employing immunohistochemistry of tumor tissues and ex vivo analysis of murine blood serum derived from locally irradiated A549-derived tumor xenografts. RESULTS: LOX was secreted in a dose dependent way from several tumor cell lines in response to irradiation. IR did not increase LOX-transcription but induced LOX-secretion. LOX-secretion could not be prevented by the microtubule stabilizing agent patupilone. In contrast, hypoxia induced LOX-transcription, and interestingly, hypoxia-dependent LOX-secretion could be counteracted by patupilone. Conditioned media from irradiated tumor cells promoted invasiveness of naïve tumor cells, while conditioned media from irradiated, LOX- siRNA-silenced cells did not stimulate their invasive capacity. Locally applied irradiation to tumor xenografts also increased LOX-secretion in vivo and resulted in enhanced LOX-levels in the murine blood serum. CONCLUSIONS: These results indicate a differential regulation of LOX-expression and secretion in response to IR and hypoxia, and suggest that LOX may contribute towards an IR-induced migratory phenotype in sublethally-irradiated tumor cells and tumor progression

    Hypoxia modulation and radiosensitization by the novel dual EGFR and VEGFR inhibitor AEE788 in spontaneous and related allograft tumor models

    Full text link
    Concomitant inhibition of ErbB1/2- and VEGF receptor-signaling synergizes when used in combination with DNA-damaging agents. Here, we investigated for the first time the combined treatment modality of the novel dual specific receptor tyrosine kinase inhibitor AEE788 with ionizing radiation and analyzed treatment-induced end points in situ as indicators for a potential sensitizing mechanism. Furthermore, we assessed tumor hypoxia in response to different antiangiogenic and antiproliferative treatment modalities. The combined treatment effect was investigated in a spontaneously growing mammary carcinoma model and against Her-2/neu-overexpressing mammary carcinoma allografts. In tumor allografts derived from murine mammary carcinoma cells of mouse mammary tumor virus/c-neu transgenic mice, a minimal treatment regimen with AEE788 and fractionated irradiation resulted in an at least additive tumor response. Treatment response in the corresponding spontaneous tumor model strongly exceeded the response induced in the isogenic allografts. Treatment-induced changes of tumor proliferation, apoptosis, and microvessel density were similar in the two tumor models. Treatment with AEE788 alone or in combination with IR strongly improved tumor oxygenation in both tumor models as determined by the detection of endogenous and exogenous markers of tumor hypoxia. Specific inhibition of the VEGF-receptor tyrosine kinase versus Erb1/2-receptor tyrosine kinase indicated that it is the antiproliferative and not the antiangiogenic potency of AEE788 that mediates the hypoxia-reducing effect of this dual kinase-specific inhibitor. Overall, we show that concomitant inhibition of ErbB- and VEGF-receptor signaling by AEE788, in combination with ionizing radiation, is a promising treatment approach, especially in hypoxic, oncogenic ErbB-driven tumors

    Antagonizing the hedgehog pathway with vismodegib impairs malignant pleural mesothelioma growth in vivo by affecting stroma

    Full text link
    An autocrine driven upregulation of the Hedgehog (Hh) signaling pathway has been described in malignant pleural mesothelioma (MPM), in which the ligand, desert hedgehog (DHH), was produced from tumor cells. However, our investigation revealed that the Hh pathway is activated in both tumor and stroma of MPM tumor specimens and an orthotopic immunocompetent rat MPM model. This was demonstrated by positive immunohistochemical staining of Glioma associated oncogene 1 (GLI1) and Patched1 (PTCH1) in both tumor and stromal fractions. DHH was predominantly expressed in the tumor fractions. To further investigate the role of the Hh pathway in MPM stroma, we antagonized Hh signaling in the rat model of MPM using a Hh antagonist, vismodegib, (100 mg/kg peroral). Daily treatment with vismodegib efficiently downregulated Hh target genes, Gli1, Hedgehog Interacting Protein (Hhip) and Ptch1, and caused a significant reduction of tumor volume, and tumor growth delay. Immunohistochemical analyses revealed that vismodegib treatment primarily down regulated GLI1 and HHIP in the stromal compartment along with a reduced expression of previously described fibroblast Hh responsive genes such as Fibronectin (Fn1) and Vegf. Primary cells isolated from the rat model cultured in 3%O2 continued to express Dhh but did not respond to vismodegib in vitro. However, culture supernatant from these cells stimulated Gli1, Ptch1, and Fn1 expression in mouse embryonic fibroblasts which was suppressed by vismodegib. Our study provides new evidence regarding the role of Hh signaling in MPM stroma in the maintenance of tumor growth, emphasizing Hh signaling as a treatment target for MPM

    Evaluation of imaging techniques for the assessment of tumour progression in an orthotopic rat model of malignant pleural mesothelioma

    Full text link
    OBJECTIVES An orthotopic rat tumour recurrence model for malignant pleural mesothelioma (MPM) provides clinical similarity to patients and is useful for drug testing combined with surgical intervention. Importantly, a reliable imaging method is required allowing for noninvasive and repetitive evaluation of the tumour load. We compared the tumour load assessed by bioluminescence and magnetic resonance imaging (MRI) to the macroscopic tumour volume as a reference standard. METHODS A total of 500 000 syngeneic rat MPM cells transfected with luciferase were implanted underneath the parietal pleura of immunocompetent rats (n = 13). From the second day after implantation, bioluminescence measurements of the tumour load expressed as the maximum bioluminescent intensity (photon/second) were performed daily after intraperitoneal injection of the luciferase substrate, d-luciferin, to observe the first occurrence of tumour. Six days after the first detection of tumour, bioluminescence, MRI and macroscopic tumour volume measurement were conducted. For MRI, a 4.7-Tesla small animal imager equipped with a (1)H whole-body rat coil was employed using T2-weighted fast spin-echo sequences. Tumour burden (mm(3)) was quantified from magnetic resonance transverse images by two independent readers by manual segmentation. Finally, the tumour burden assessed by bioluminescence and MRI was correlated (Pearson's correlation) with the macroscopic measurement of tumour (ellipsoid) volume. RESULTS In all rats, a single tumour nodule was found at the inoculation site with a median macroscopic volume of 46 mm(3) (18-377 mm(3)). For tumour burden quantification of MRIs, we observed good interobserver correlation (R(2) = 0.81, P < 0.0001) as well as significant association with the macroscopic tumour volume (R(2) = 0.59, P = 0.002). However, the signal intensity of bioluminescence did not correspond to the macroscopic tumour volume (R(2) = 0.01, P = 0.76). CONCLUSIONS MRI is a reliable and reproducible noninvasive in vivo imaging method for MPM tumour burden assessment for the present MPM model
    corecore