546 research outputs found

    Ontology of common sense geographic phenomena: Foundations for interoperable multilingual geospatial databases

    Get PDF
    Information may be defined as the conceptual or communicable part of the content of mental acts. The content of mental acts includes sensory data as well as concepts, particular as well as general information. An information system is an external (non-mental) system designed to store such content. Information systems afford indirect transmission of content between people, some of whom may put information into the system and others who are among those who use the system. In order for communication to happen, the conceptual systems of the originators and users of the information must be sufficiently similar. A formal conceptual framework that can provide the basis for exchange of information is termed an ontology. In its most fundamental form, ontology studies the most basic constituents of reality. Traditionally, ontology seeks to reflects structures that are independent of thought and cognition. The term ontology is used more broadly in artificial intelligence and software engineering, to refer to the conceptual basis for an information system

    Eudaimonistic Argumentation

    Get PDF
    Virtue theories have lately enjoyed a modest vogue in the study of argumentation, echoing the success of more far-reaching programmes in ethics and epistemology. Virtue theories of argumentation (VTA) comprise several conceptually distinct projects, including the provision of normative foundations for argument evaluation and a renewed focus on the character of good arguers. Perhaps the boldest of these is the pursuit of the fully satisfying argument, the argument that contributes to human flourishing. This project has an independently developed epistemic analogue: eudaimonistic virtue epistemology. Both projects stress the importance of widening the range of cognitive goals beyond, respectively, cogency and knowledge; both projects emphasize social factors, the right sort of community being indispensable for the cultivation of the intellectual virtues necessary to each project. This paper proposes a unification of the two projects by arguing that the intellectual good life sought by eudaimonistic virtue epistemologists is best realized through the articulation of an account of argumentation that contributes to human flourishing

    The [Y/Mg] clock works for evolved solar metallicity stars

    Get PDF
    Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the logg\log g is determined to much higher precision than what is possible with spectroscopy. It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs.Comment: 5 pages, 3 figures, accepted for publication as a Letter to A&

    KIC 8410637: a 408-day period eclipsing binary containing a pulsating red giant

    Get PDF
    Detached eclipsing binaries (dEBs) are ideal targets for accurate measurement of masses and radii of ther component stars. If at least one of the stars has evolved off the main sequence (MS), the masses and radii give a strict constraint on the age of the stars. Several dEBs containing a bright K giant and a fainter MS star have been discovered by the Kepler satellite. The mass and radius of a red giant (RG) star can also be derived from its asteroseismic signal. The parameters determined in this way depend on stellar models and may contain systematic errors. It is important to validate the asteroseismically determined mass and radius with independent methods. This can be done when stars are members of stellar clusters or members of dEBs. KIC 8410637 consists of an RG and an MS star. The aim is to derive accurate masses and radii for both components and provide the foundation for a strong test of the asteroseismic method and the accuracy of the deduced mass, radius and age. We analyse high-resolution spectra from three different spectrographs. We also calculate a fit to the Kepler light curve and use ground-based photometry to determine the flux ratios between the component stars in the BVRI passbands. We measured the masses and radii of the stars in the dEB, and the classical parameters Teff, log g and [Fe/H] from the spectra and ground-based photometry. The RG component of KIC 8410637 is most likely in the core helium-burning red clump phase of evolution and has an age and composition very similar to the stars in the open cluster NGC 6819. The mass of the RG in KIC 8410637 should therefore be similar to the mass of RGs in NGC 6819, thus lending support to the most up-to-date version of the asteroseismic scaling relations. This is the first direct measurement of both mass and radius for an RG to be compared with values for RGs from asteroseismic scaling relations.Comment: Accepted 20.6.2013 for publication in Astronomy and Astrophysic

    The M4 Core Project with HST --- I. Overview and First-Epoch

    Full text link
    We present an overview of the ongoing Hubble Space Telescope large program GO-12911. The program is focused on the core of M4, the nearest Galactic globular cluster, and the observations are designed to constrain the number of binaries with massive companions (black holes, neutron stars, or white dwarfs) by measuring the ``wobble'' of the luminous (main-sequence) companion around the center of mass of the pair, with an astrometric precision of ~50 micro-arcseconds. The high spatial resolution and stable medium-band PSFs of WFC3/UVIS will make these measurements possible. In this work we describe: (i) the motivation behind this study, (ii) our observing strategy, (iii) the many other investigations enabled by this unique data set, and which of those our team is conducting, and (iv) a preliminary reduction of the first-epoch data-set collected on October 10, 2012.Comment: 25 pages, 14 figures (9 at low resolution), 3 tables. Published in: Astronomische Nachrichten, Volume 334, Issue 10, pages 1062-1085, December 2013. http://onlinelibrary.wiley.com/doi/10.1002/asna.201311911/abstrac

    M4 Core Project with HST - III. Search for variable stars in the primary field

    Get PDF
    We present the results of a photometric search for variable stars in the core of the Galactic globular cluster M4. The input data are a large and unprecedented set of deep Hubble Space Telescope WFC3 images (large program GO-12911; 120 orbits allocated), primarily aimed at probing binaries with massive companions by detecting their astrometric wobbles. Though these data were not optimised to carry out a time-resolved photometric survey, their exquisite precision, spatial resolution and dynamic range enabled us to firmly detect 38 variable stars, of which 20 were previously unpublished. They include 19 cluster-member eclipsing binaries (confirming the large binary fraction of M4), RR Lyrae, and objects with known X-ray counterparts. We improved and revised the parameters of some among published variables.Comment: 11 pages, 5 figures, 2 tables. Accepted for publication in MNRA

    Late regulation of immune genes and microRNAs in circulating leukocytes in a pig model of influenza A (H1N2) infection

    Get PDF
    MicroRNAs (miRNAs) are a class of short regulatory RNA molecules which are implicated in modulating gene expression. Levels of circulating, cell-associated miRNAs in response to influenza A virus (IAV) infection has received limited attention so far. To further understand the temporal dynamics and biological implications of miRNA regulation in circulating leukocytes, we collected blood samples before and after (1, 3, and 14 days) IAV challenge of pigs. Differential expression of miRNAs and innate immune factor mRNA transcripts was analysed using RT-qPCR. A total of 20 miRNAs were regulated after IAV challenge, with the highest number of regulated miRNAs seen on day 14 after infection at which time the infection was cleared. Targets of the regulated miRNAs included genes involved in apoptosis and cell cycle regulation. Significant regulation of both miRNAs and mRNA transcripts at 14 days after challenge points to a protracted effect of IAV infection, potentially affecting the host’s ability to respond to secondary infections. In conclusion, experimental IAV infection of pigs demonstrated the dynamic nature of miRNA and mRNA regulation in circulating leukocytes during and after infection, and revealed the need for further investigation of the potential immunosuppressing effect of miRNA and innate immune signaling after IAV infection
    corecore