16 research outputs found

    A method for extending planar axis-symmetric parallel manipulators to spatial mechanisms

    Full text link
    This paper investigates axis-symmetric parallel manipulators, composed of a central base column and an arm system able to rotate around this column. The arm system includes several actuated upper arms, each connected to a manipulated platform by one or more lower arm linkages. Such manipulators feature an extensive positional workspace in relation to the manipulator footprint and equal manipulator properties in all radial half-planes defined by the common rotation-axis of the upper arms. The similarities between planar manipulators exclusively employing 2-degrees-of-freedom (2-DOF) lower arm linkages and lower mobility spatial manipulators only utilising 5-DOF lower arm linkages are analysed. The 2-DOF linkages are composed of a link with a 1-DOF hinge on both ends whilst the 5-DOF linkages utilise 3-DOF spherical joints and 2-DOF universal joints. By employing a proposed linkage substitution scheme, it is shown how a wide range of spatial axis-symmetric parallel manipulators can be derived from a limited range of planar manipulators of the same type

    Robot Control Overview: An Industrial Perspective

    No full text
    One key competence for robot manufacturers is robot control, defined as all the technologies needed to control the electromechanical system of an industrial robot. By means of modeling, identification, optimization, and model-based control it is possible to reduce robot cost, increase robot performance, and solve requirements from new automation concepts and new application processes. Model-based control, including kinematics error compensation, optimal servo reference- and feed-forward generation, and servo design, tuning, and scheduling, has meant a breakthrough for the use of robots in industry. Relying on this breakthrough, new automation concepts such as high performance multi robot collaboration and human robot collaboration can be introduced. Robot manufacturers can build robots with more compliant components and mechanical structures without loosing performance and robots can be used also in applications with very high performance requirements, e.g., in assembly, machining, and laser cutting. In the future it is expected that the importance of sensor control will increase, both with respect to sensors in the robot structure to increase the control performance of the robot itself and sensors outside the robot related to the applications and the automation systems. In this connection sensor fusion and learning functionalities will be needed together with the robot control for easy and intuitive installation, programming, and maintenance of industrial robots

    Oscillations in Plant Transpiration

    No full text
    corecore