272 research outputs found

    Two canine CD1a proteins are differentially expressed in skin

    Get PDF
    Lipid antigens are presented to T cells by the CD1 family of proteins. In this study, we characterize the complete dog (Canis familiaris) CD1 locus, which is located on chromosome 38. The canine locus contains eight CD1A genes (canCD1A), of which five are pseudogenes, one canCD1B, one canCD1C, one canCD1D, and one canCD1E gene. In vivo expression of canine CD1 proteins was shown for canCD1a6, canCD1a8, and canCD1b, using a panel of anti-CD1 monoclonal antibodies (mAbs). CanCD1a6 and canCD1a8 are recognized by two distinct mAbs. Furthermore, we show differential transcription of the three canCD1A genes in canine tissues. In canine skin, the transcription level of canCD1A8 was higher than that of canCD1A6, and no transcription of canCD1A2 was detected. Based on protein modeling and protein sequence alignment, we predict that both canine CD1a proteins can bind different glycolipids in their groove. Besides differences in ectodomain structure, we observed the unique presence of three types of cytoplasmic tails encoded by canCD1A genes. cDNA sequencing and expressed sequence tag sequences confirmed the existence of a short, human CD1a-like cytoplasmic tail of four amino acids, of an intermediate length form of 15 amino acids, and of a long form of 31 amino acids

    Fetal sex and maternal pregnancy outcomes: a systematic review and meta-analysis.

    Get PDF
    BACKGROUND Since the placenta also has a sex, fetal sex-specific differences in the occurrence of placenta-mediated complications could exist. OBJECTIVE To determine the association of fetal sex with multiple maternal pregnancy complications. SEARCH STRATEGY Six electronic databases Ovid MEDLINE, EMBASE, Cochrane Central, Web-of-Science, PubMed, and Google Scholar were systematically searched to identify eligible studies. Reference lists of the included studies and contact with experts were also used for identification of studies. SELECTION CRITERIA Observational studies that assessed fetal sex and the presence of maternal pregnancy complications within singleton pregnancies. DATA COLLECTION AND ANALYSES Data were extracted by 2 independent reviewers using a predesigned data collection form. MAIN RESULTS From 6522 original references, 74 studies were selected, including over 12,5 million women. Male fetal sex was associated with term pre-eclampsia (pooled OR 1.07 [95%CI 1.06 to 1.09]) and gestational diabetes (pooled OR 1.04 [1.02 to 1.07]). All other pregnancy complications (i.e., gestational hypertension, total pre-eclampsia, eclampsia, placental abruption, and post-partum hemorrhage) tended to be associated with male fetal sex, except for preterm pre-eclampsia, which was more associated with female fetal sex. Overall quality of the included studies was good. Between-study heterogeneity was high due to differences in study population and outcome definition. CONCLUSION This meta-analysis suggests that the occurrence of pregnancy complications differ according to fetal sex with a higher cardiovascular and metabolic load for the mother in the presence of a male fetus. FUNDING None

    A Well‐Defined Anionic Dicopper(I) Monohydride Complex that Reacts like a Cluster**

    Get PDF
    Low-nuclearity copper hydrides are rare and few well-defined dicopper hydrides have been reported. Herein, we describe the first example of a structurally characterized anionic dicopper hydride complex. This complex does not display typical reactivity associated with low-nuclearity copper hydrides, such as alcoholysis or insertion reactions. Instead, its stoichiometric and catalytic reactivity is akin to that of copper hydride clusters. The distinct reactivity is ascribed to the robust dinuclear core that is bound tightly within the dinucleating ligand scaffold

    Perforin and granzyme A release as novel tool to measure NK cell activation in chickens

    Get PDF
    Natural killer (NK) cells are cytotoxic lymphocytes that are present in the circulation but also in many organs including spleen and gut, where they play an important role in the defense against infections. Interaction of NK cells with target cells leads to degranulation, which results in the release of perforin and granzymes in the direct vicinity of the target cell. Chicken NK cells have many characteristics similar to their mammalian counterparts and based on similarities with studies on human NK cells, surface expression of CD107 was always presumed to correlate with granule release. However, proof of this degranulation or in fact the actual presence of perforin (PFN) and granzyme A (GrA) in chicken NK cells and their release upon activation is lacking. Therefore, the purpose of the present study was to determine the presence of perforin and granzyme A in primary chicken NK cells and to measure their release upon degranulation, as an additional tool to study the function of chicken NK cells. Using human specific antibodies against PFN and GrA in fluorescent and confocal microscopy resulted in staining in chicken NK cells. The presence of PFN and GrA was also confirmed by Western blot analyses and its gene expression by PCR. Stimulation of NK cells with the pectin SPE6 followed by flow cytometry resulted in reduced levels of intracellular PFN and GrA, suggesting release of PFN and GrA. Expression of PFN and GrA reversely correlated with increased surface expression of the lysosomal marker CD107. Finally it was shown that the supernatant of activated NK cells, containing the NK cell granule content including PFN and GrA, was able to kill Escherichia coli. This study correlates PFN and GrA release to activation of chicken NK cells and establishes an additional tool to study activity of cytotoxic lymphocytes in chickens

    Hydrogen Evolution Electrocatalysis with a Molecular Cobalt Bis(alkylimidazole)methane Complex in DMF: a Critical Activity Analysis

    Get PDF
    [Co(HBMIMPh2)2](BF4)2 (1) [HBMIMPh2=bis(1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methane] was investigated for its electrocatalytic hydrogen evolution performance in DMF using voltammetry and during controlled potential/current electrolysis (CPE/CCE) in a novel in-line product detection setup. Performances were benchmarked against three reported molecular cobalt hydrogen evolution reaction (HER) electrocatalysts, [Co(dmgBF2)2(solv)2] (2) (dmgBF2=difluoroboryldimethylglyoximato), [Co(TPP)] (3) (TPP=5,10,15,20-tetraphenylporphyrinato), and [Co(bapbpy)Cl](Cl) (4) [bapbpy=6,6′-bis-(2-aminopyridyl)-2,2′-bipyridine], showing distinct performances differences with 1 being the runner up in H2 evolution during CPE and the best catalyst in terms of overpotential and Faradaic efficiency during CCE. After bulk electrolysis, for all of the complexes, a deposit on the glassy carbon electrode was observed, and post-electrolysis X-ray photoelectron spectroscopy (XPS) analysis of the deposit formed from 1 demonstrated only a minor cobalt contribution (0.23 %), mainly consisting of Co2+. Rinse tests on the deposits derived from 1 and 2 showed that the initially observed distinct activity was (partly) preserved for the deposits. These observations indicate that the molecular design of the complexes dictates the features of the formed deposit and therewith the observed activity
    corecore