963 research outputs found

    Resonances and Twist in Volume-Preserving Mappings

    Full text link
    The phase space of an integrable, volume-preserving map with one action and dd angles is foliated by a one-parameter family of dd-dimensional invariant tori. Perturbations of such a system may lead to chaotic dynamics and transport. We show that near a rank-one, resonant torus these mappings can be reduced to volume-preserving "standard maps." These have twist only when the image of the frequency map crosses the resonance curve transversely. We show that these maps can be approximated---using averaging theory---by the usual area-preserving twist or nontwist standard maps. The twist condition appropriate for the volume-preserving setting is shown to be distinct from the nondegeneracy condition used in (volume-preserving) KAM theory.Comment: Many typos fixed and notation simplified. New nthn^{th} order averaging theorem and volume-preserving variant. Numerical comparison with averaging adde

    Circular dichroism of cholesteric polymers and the orbital angular momentum of light

    Get PDF
    We explore experimentally if the light's orbital angular momentum (OAM) interacts with chiral nematic polymer films. Specifically, we measure the circular dichroism of such a material using light beams with different OAM. We investigate the case of strongly focussed, non-paraxial light beams, where the spatial and polarization degrees of freedom are coupled. Within the experimental accuracy, we cannot find any influence of the OAM on the circular dichroism of the cholesteric polymer.Comment: 3 pages, 4 figure

    Resonances in a spring-pendulum: algorithms for equivariant singularity theory

    Get PDF
    A spring-pendulum in resonance is a time-independent Hamiltonian model system for formal reduction to one degree of freedom, where some symmetry (reversibility) is maintained. The reduction is handled by equivariant singularity theory with a distinguished parameter, yielding an integrable approximation of the Poincaré map. This makes a concise description of certain bifurcations possible. The computation of reparametrizations from normal form to the actual system is performed by Gröbner basis techniques.

    Roughness correction to the Casimir force at short separations: Contact distance and extreme value statistics

    Get PDF
    So far there has been no reliable method to calculate the Casimir force at separations comparable to the root-mean-square of the height fluctuations of the surfaces. Statistical analysis of rough gold samples has revealed the presence of peaks considerably higher than the root-mean-square roughness. These peaks redefine the minimum separation distance between the bodies and can be described by extreme value statistics. Here we show that the contribution of the high peaks to the Casimir force can be calculated with a pairwise additive summation, while the contribution of asperities with normal height can be evaluated perturbatively. This method provides a reliable estimate of the Casimir force at short distances, and it solves the significant, so far unexplained discrepancy between measurements of the Casimir force between rough surfaces and the results of perturbation theory. Furthermore, we illustrate the importance of our results in a technologically relevant situation.Comment: 29 pages, 11 figures, to appear in Phys. Rev.

    Differential constraints for the Kaup -- Broer system as a reduction of the 1D Toda lattice

    Full text link
    It is shown that some special reduction of infinite 1D Toda lattice gives differential constraints compatible with the Kaup -- Broer system. A family of the travelling wave solutions of the Kaup -- Broer system and its higher version is constructed.Comment: LaTeX, uses IOP styl

    Dissipative Boussinesq System of Equations in the B\'enard-Marangoni Phenomenon

    Full text link
    By using the long-wave approximation, a system of coupled evolution equations for the bulk velocity and the surface perturbations of a B\'enard-Marangoni system is obtained. It includes nonlinearity, dispersion and dissipation, and it can be interpreted as a dissipative generalization of the usual Boussinesq system of equations. As a particular case, a strictly dissipative version of the Boussinesq system is obtained. Finnaly, some speculations are made on the nature of the physical phenomena described by this system of equations.Comment: 15 Pages, REVTEX (Version 3.0), no figure

    Unoccupied states of individual silver clusters and chains on Ag(111)

    Full text link
    Size-selected silver clusters on Ag(111) were fabricated with the tip of a scanning tunneling microscope. Unoccupied electron resonances give rise to image contrast and spectral features which shift toward the Fermi level with increasing cluster size. Linear assemblies exhibit higher resonance energies than equally sized compact assemblies. Density functional theory calculations reproduce the observed energies and enable an assignment of the resonances to hybridized atomic 5s and 5p orbitals with silver substrate states.Comment: 9 pages, 8 figure
    • 

    corecore