4 research outputs found

    Metformin impairs mitochondrial function in skeletal muscle of both lean and diabetic rats in a Dose-dependent manner

    Get PDF
    Metformin is a widely prescribed drug for the treatment of type 2 diabetes. Previous studies have demonstrated in vitro that metformin specifically inhibits Complex I of the mitochondrial respiratory chain. This seems contraindicative since muscle mitochondrial dysfunction has been linked to the pathogenesis of type 2 diabetes. However, its significance for in vivo skeletal muscle mitochondrial function has yet to be elucidated. The aim of this study was to assess the effects of metformin on in vivo and ex vivo skeletal muscle mitochondrial function in a rat model of diabetes. Healthy (fa/+) and diabetic (fa/fa) Zucker diabetic fatty rats were treated by oral gavage with metformin dissolved in water (30, 100 or 300 mg/kg bodyweight/day) or water as a control for 2 weeks. After 2 weeks of treatment, muscle oxidative capacity was assessed in vivo using 31P magnetic resonance spectroscopy and ex vivo by measuring oxygen consumption in isolated mitochondria using high-resolution respirometry. Two weeks of treatment with metformin impaired in vivo muscle oxidative capacity in a dose-dependent manner, both in healthy and diabetic rats. Whereas a dosage of 30 mg/kg/day had no significant effect, in vivo oxidative capacity was 21% and 48% lower after metformin treatment at 100 and 300 mg/kg/day, respectively, independent of genotype. High-resolution respirometry measurements demonstrated a similar dose-dependent effect of metformin on ex vivo mitochondrial function. In conclusion, metformin compromises in vivo and ex vivo muscle oxidative capacity in Zucker diabetic fatty rats in a dose-dependent manner. Copyright: © 2014 Wessels et al

    Carnitine supplementation in high-fat diet-fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo

    No full text
    \u3cp\u3eMuscle lipid overload and the associated accumulation of lipid intermediates play an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid intermediates out of the mitochondria. The aim of the present study was to test the hypothesis that carnitine supplementation reduces high-fat diet-induced lipotoxicity, improves muscle mitochondrial function, and ameliorates insulin resistance. Wistar rats were fed either normal chow or a high-fat diet for 15 wk. One group of high-fat diet-fed rats was supplemented with 300 mg·kg\u3csup\u3e−1\u3c/sup\u3e·day\u3csup\u3e−1\u3c/sup\u3e L-carnitine during the last 8 wk. Muscle mitochondrial function was measured in vivo by \u3csup\u3e31\u3c/sup\u3eP magnetic resonance spectroscopy (MRS) and ex vivo by high-resolution respirometry. Muscle lipid status was determined by \u3csup\u3e1\u3c/sup\u3eH MRS (intramyocellular lipids) and tandem mass spectrometry (acylcarnitines). High-fat diet feeding induced insulin resistance and was associated with decreases in muscle and blood free carnitine, elevated levels of muscle lipids and acylcarnitines, and an increased number of muscle mitochondria that showed an improved capacity to oxidize fat-derived substrates when tested ex vivo. This was, however, not accompanied by an increase in muscle oxidative capacity in vivo, indicating that in vivo mitochondrial function was compromised. Despite partial normalization of muscle and blood free carnitine content, carnitine supplementation did not induce improvements in muscle lipid status, in vivo mitochondrial function, or insulin sensitivity. Carnitine insufficiency, therefore, does not play a major role in high-fat diet-induced muscle mitochondrial dysfunction in vivo.\u3c/p\u3

    Differential effects of short- and long-term high-fat diet feeding on hepatic fatty acid metabolism in rats

    No full text
    Imbalance in the supply and utilization of fatty acids (FA) is thought to contribute to intrahepatic lipid (IHL) accumulation in obesity. The aim of this study was to determine the time course of changes in the liver capacity to oxidize and store FA in response to high-fat diet (HFD). Adult male Wistar rats were fed either normal chow or HFD for 2.5 weeks (short-term) and 25 weeks (long-term). Short-term HFD feeding led to a 10% higher palmitoyl-l-carnitine-driven ADP-stimulated (state 3) oxygen consumption rate in isolated liver mitochondria indicating up-regulation of ß-oxidation. This adaptation was insufficient to cope with the dietary FA overload, as indicated by accumulation of long-chain acylcarnitines, depletion of free carnitine and increase in FA content in the liver, reflecting IHL accumulation. The latter was confirmed by in vivo1H magnetic resonance spectroscopy and Oil Red O staining. Long-term HFD feeding caused further up-regulation of mitochondrial ß-oxidation (24% higher oxygen consumption rate in state 3 with palmitoyl-l-carnitine as substrate) and stimulation of mitochondrial biogenesis as indicated by 62% higher mitochondrial DNA copy number compared to controls. These adaptations were paralleled by a partial restoration of free carnitine levels and a decrease in long-chain acylcarnitine content. Nevertheless, there was a further increase in IHL content, accompanied by accumulation of lipid peroxidation and protein oxidation products. In conclusion, partially effective adaption of hepatic FA metabolism to long-term HFD feeding came at a price of increased oxidative stress, caused by a combination of higher FA oxidation capacity and oversupply of FA

    Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes

    Get PDF
    Context: Conflicting data exist on mitochondrial function and physical activity in type 2 diabetes mellitus (T2DM) development. Objective: The aim was to assess mitochondrial function at different stages during T2DM development in combination with physical exercise in longstanding T2DM patients. Design and Methods: We performed cross-sectional analysis of skeletal muscle from 12 prediabetic 11 longstanding T2DM male subjects and 12 male controls matched by age and body mass index. Intervention: One-year intrasubject controlled supervised exercise training intervention was done in longstanding T2DM patients. Main Outcome Measurements: Extensive ex vivo analyses of mitochondrial quality, quantity, and function were collected and combined with global gene expression analysis and in vivo ATP production capacity after 1 yr of training. Results: Mitochondrial density, complex I activity, and the expression of Krebs cycle and oxidative phosphorylation system-related genes were lower in longstanding T2DM subjects but not in prediabetic subjects compared with controls. This indicated a reduced capacity to generate ATP in longstanding T2DM patients only. Gene expression analysis in prediabetic subjects suggested a switch from carbohydrate toward lipid as an energy source. One year of exercise training raised in vivo skeletal muscle ATP production capacity by 21 +/- 2% with an increased trend in mitochondrial density and complex I activity. In addition, expression levels of beta-oxidation, Krebs cycle, and oxidative phosphorylation system-related genes were higher after exercise training. Conclusions: Mitochondrial dysfunction is apparent only in inactive longstanding T2DM patients, which suggests that mitochondrial function and insulin resistance do not depend on each other. Prolonged exercise training can, at least partly, reverse the mitochondrial impairments associated with the longstanding diabetic state. (J Clin Endocrinol Metab 97: 3261-3269, 2012
    corecore