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Abstract

Metformin is a widely prescribed drug for the treatment of type 2 diabetes. Previous studies have demonstrated in vitro that
metformin specifically inhibits Complex I of the mitochondrial respiratory chain. This seems contraindicative since muscle
mitochondrial dysfunction has been linked to the pathogenesis of type 2 diabetes. However, its significance for in vivo
skeletal muscle mitochondrial function has yet to be elucidated. The aim of this study was to assess the effects of metformin
on in vivo and ex vivo skeletal muscle mitochondrial function in a rat model of diabetes. Healthy (fa/+) and diabetic (fa/fa)
Zucker diabetic fatty rats were treated by oral gavage with metformin dissolved in water (30, 100 or 300 mg/kg
bodyweight/day) or water as a control for 2 weeks. After 2 weeks of treatment, muscle oxidative capacity was assessed in
vivo using 31P magnetic resonance spectroscopy and ex vivo by measuring oxygen consumption in isolated mitochondria
using high-resolution respirometry. Two weeks of treatment with metformin impaired in vivo muscle oxidative capacity in a
dose-dependent manner, both in healthy and diabetic rats. Whereas a dosage of 30 mg/kg/day had no significant effect, in
vivo oxidative capacity was 21% and 48% lower after metformin treatment at 100 and 300 mg/kg/day, respectively,
independent of genotype. High-resolution respirometry measurements demonstrated a similar dose-dependent effect of
metformin on ex vivo mitochondrial function. In conclusion, metformin compromises in vivo and ex vivo muscle oxidative
capacity in Zucker diabetic fatty rats in a dose-dependent manner.
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Introduction

Metformin is the most commonly prescribed drug to treat type 2

diabetes and it has been in clinical use for decades. Metformin is a

biguanide that lowers blood glucose levels primarily by improving

insulin sensitivity in the liver, where it effectively inhibits

gluconeogenesis [1], whereas it does not have marked hypoglyce-

mic effects [2]. Moreover, metformin enhances insulin sensitivity

in skeletal muscle, thereby stimulating peripheral glucose utiliza-

tion [3].

A number of in vitro studies reported that metformin inhibits

Complex I of the mitochondrial respiratory chain [3–9], thus

limiting the respiratory capacity of the cell and possibly restricting

ATP synthesis. The mechanism through which metformin acts on

Complex I, however, is still not known. Some studies suggest that

metformin binds directly to the mitochondrial membrane phos-

pholipids, thereby altering physicochemical membrane properties

[3,10]. Others contradict this direct mechanism and postulate that

an intact cell is required for metformin’s inhibitory action on

Complex I, involving an indirect pathway via the cell membrane

[6,8].

Treatment of patients with type 2 diabetes with a Complex I

inhibitor seems contraindicative, since muscle mitochondrial

dysfunction has been linked to the pathogenesis of this disease

[11,12]. Moreover, considering that regular exercise is recom-

mended in most guidelines for the treatment of type 2 diabetes

[13,14], it seems even more unfavorable to treat diabetes patients

with a Complex I inhibitor, as it would attenuate their exercise

capacity and consequently their ability to increase insulin

sensitivity via exercise training. The latter has indeed been

demonstrated by Sharoff et al. [15], who observed that the

therapeutic effects of exercise training were absent in patients who

were treated with metformin in conjunction with exercise therapy.

Although the specific inhibitory action of metformin on

Complex I has been shown using in vitro measurements, its

significance for in vivo skeletal muscle mitochondrial function has

yet to be elucidated. The aim of this study was to determine the

effect of metformin on in vivo skeletal muscle oxidative capacity in a

rat model of diabetes using phosphorous (31P) magnetic resonance

spectroscopy (MRS). Lean, healthy and obese, diabetic Zucker

diabetic fatty (ZDF) rats were dosed orally for 2 weeks with

metformin dissolved in water (30, 100 or 300 mg/kg body weight/

day) or water as a control. A dosage of 30 mg/kg/day is typically

prescribed for diabetes patients, while, because of the lower

bioavailability of metformin in rats compared with humans,

,100–300 mg/kg/day metformin is needed to attain similar
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effects on glucose homeostasis in rats [3,16–21]. 31P MRS

measurements were complemented by ex vivo high resolution

respirometry (HRR) measurements in isolated mitochondria to

interpret the effects of metformin on in vivo oxidative capacity. We

demonstrated that 2 weeks of treatment with metformin compro-

mised in vivo and ex vivo muscle oxidative capacity in ZDF rats in a

dose-dependent manner.

Research Design and Methods

Ethics statement
All experimental procedures were reviewed and approved by

the Animal Experimental Committee of Maastricht University

(permit number: 2011-047). Surgery, MRS experiments and

termination were performed under isoflurane (IsoFlo) anesthesia

with additional pain relief using buprenorphine (Temgesic), and all

efforts were made to minimize suffering.

Animals
Lean, non-diabetic fa/+ and obese, diabetic, fa/fa adult male

ZDF rats (12 weeks of age) were purchased from Charles River

Laboratories (Sulzfield, Germany). The animals were housed

pairwise, in a controlled environment (20uC and 50% relative

humidity on a 12-h light-dark cycle) and given ad libitum access to

water and specific standardized chow for ZDF rats (Purina

Formula 5008, Bioservices, the Netherlands). For 15 days, animals

were dosed with metformin (0, 30, 100 or 300 mg/kg body

weight/day, n = 6 per group) in 1 ml of water directly into the

stomach by oral gavage. Dosing was performed once daily

between 4 and 6 pm. At day 15, in vivo MRS experiments were

performed on the animals between 8 am and 4 pm, i.e. 14–24

hours after the dosage of metformin on the previous day.

Following the MRS measurements, animals were administered

with the last dose of metformin (between 4 and 6 pm). The

following day between 8 and 10 am, i.e. 14–18 hours after the last

dosage of metformin, animals were sacrificed under anesthesia by

incision of the vena cava. The terminal half-life of metformin after

oral administration in rats has been determined to be ,3, 6 and 7

hours at doses of 50, 100 and 200 mg/kg, respectively [22], which

implies that all in vivo and ex vivo experiments were performed

under conditions in which plasma levels of metformin were less

than 5% of the maximum plasma concentrations. One tibialis

anterior (TA) muscle was used for isolation of mitochondria. The

other TA was frozen in liquid nitrogen and stored at 280uC.

Plasma parameters
After 2 weeks of treatment, a blood sample was taken between

12 and 2 pm (i.e. at least 18 hours after the previous dosage of

metformin), after a 4-hour fast, for determination of post-therapy

plasma glucose and insulin concentrations. Plasma glucose

concentrations were determined using an automatic glucometer

(Freestyle, Abbott, IL, USA). Plasma insulin concentrations were

determined with an ultrasensitive rat insulin ELISA kit (Mercodia,

Uppsala, Sweden).

MRS measurements
31P MRS measurements were performed using a horizontal 6.3-

T MR scanner (Bruker, Ettlingen, Germany) with an ellipsoid (10/

18 mm) 31P surface coil. The animals were anaesthetized using

isoflurane (2–3%) combined with medical air (0.6 L/min). 31P

MRS was applied to assess in vivo oxidative capacity of the TA

muscle, as described previously [23]. A fully relaxed spectrum

(repetition time = 20 s, 32 averages) was recorded first, followed

by a time series of spectra (repetition time = 5 s, 4 averages)

obtained during a resting period of 3 min, 2 min of electrical

stimulation and 15 min of recovery. Electrodes were implanted

subcutaneously along the distal nerve trajectory of the N. peroneus

communis to electrically stimulate the TA muscle. Pulses with a

stimulation voltage of approximately 3 V were used to reach

similar levels of phosphocreatine (PCr) depletion for the different

animals.

MRS data analysis
MR spectra were fitted in the time domain using a nonlinear

least squares algorithm (advanced method for accurate, robust,

and efficient spectral fitting; AMARES) in the jMRUI software

package [24] as described previously [23]. In short, spectral

analysis of the 31P MR spectra was done by fitting the PCr peak to

Lorentzian and the inorganic phosphate (Pi) as well as the a-, b-

and c-ATP peaks to Gaussian line shapes. Intracellular pH was

calculated from the chemical shift difference between the Pi and

PCr resonances [25]. For the time series, the concentrations of

PCr determined during recovery were fit to a mono-exponential

function using Matlab (version 7.11.0, Mathworks, Natick, MA,

USA) yielding a rate constant, kPCr, which is a measure of skeletal

muscle mitochondrial oxidative capacity. For each rat, results from

two time series with end-stimulation pH values higher than 6.9

were averaged [26].

Determination of the relative mitochondrial DNA copy
number

The relative mitochondrial-DNA copy number was measured

as described previously [27]. Briefly, genomic DNA was isolated

from a 25 mg transversal slice of mid-belly TA using GenElute

Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich,

Zwijndrecht, The Netherlands). Mitochondrial DNA (mtDNA)

content relative to peroxisome proliferator-activated receptor-c
coactivator 1a (PGC-1a) gene was measured using real-time PCR

as described in [28].

High-resolution respirometry
Skeletal muscle mitochondria were isolated from whole TA

muscle through a differential centrifugation procedure as de-

scribed elsewhere [27]. Mitochondrial protein content was

determined using a BCA protein assay kit (Pierce, Thermo Fisher

Scientific Inc., Rockfort, IL, USA). Ex vivo mitochondrial function

was evaluated by measuring oxygen consumption rates (O2 flux) at

37uC using a 2-channel high-resolution Oroboros oxygraph-2k

(Oroboros, Innsbruck, Austria) as described previously [27]. O2

flux was fueled either with 5 mM pyruvate plus 5 mM malate

(Complex I respiration) or 5 mM succinate plus 1 mM rotenone

(Complex II respiration). Maximal rates of oxygen consumption

coupled to ATP synthesis, i.e. the OXPHOS state (classical state

3), was determined after addition of an ADP-regenerating system

consisting of excess hexokinase (4.8 U/ml), glucose (12.5 mM) and

ATP (1 mM). The resting state respiration, which compensates for

proton leak, i.e. the LEAK state (classical state 4), was assessed

after addition of 1.25 mM carboxyatractyloside (CAT). Finally, the

maximal capacity of the electron transfer system (ETS), i.e. the

ETS state (classical state U), was determined by uncoupling the

ETS from ATP synthesis with the addition of 1 mM carbonyl

cyanide 3-chlorophenyl hydrazone (CCCP) [29]. The respiratory

control ratio (RCR) was calculated as the ratio of OXPHOS to

LEAK states.

Metformin Impairs Muscle Mitochondrial Function
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High-resolution respirometry after in vitro incubation
with metformin

Isolated mitochondria from a cohort of water-treated lean and

diabetic ZDF rats (n = 5 per genotype) were incubated in assay

medium supplemented with metformin (1 mM) for 5 minutes in

the presence of pyruvate and malate or succinate plus rotenone (at

37uC), after which mitochondrial respiratory capacity was assessed

in the OXPHOS state. Results were expressed relative to the

oxygen consumption rates measured without incubation with

metformin.

For all HRR measurements, signals from the oxygen electrode

were recorded at 0.5-s intervals and measurements were done in

duplicate. Data acquisition and analysis was performed using

Oxygraph-2k-Datlab 4.3.1.15 software (Oroboros, Innsbruck,

Austria).

Statistical analysis
Data are presented as means 6 SD. Statistical significance of

genotype and treatment effects were assessed by applying a two-

way Analysis of Variance (ANOVA) in the IBM SPSS 20 statistical

package (SPSS Inc., Chicago, IL, USA). In case of a significant

effect of treatment, Bonferroni corrected post-hoc tests were

carried out in order to identify differences between different

treatment regimens. In case the interaction between genotype and

treatment was significant or borderline significant (P,0.1), the

differences were evaluated in more detail by separately analyzing

the effects of genotype and treatment using Bonferroni-corrected

two-sided unpaired t-tests. For determination of mitochondrial

respiratory capacity changes after in vitro incubation of mitochon-

dria with metformin, statistical analysis was done using a 262

mixed design ANOVA with one within-subjects factor (metformin

incubation) and one between-subjects factor (genotype) in SPSS.

The level of statistical significance was set at P,0.05.

Results

Animal characteristics
Animal characteristics after 2 weeks of treatment are summa-

rized in Table 1. Body weight was significantly higher in diabetic

animals compared with lean animals (P,0.01), except for the

water-treated groups (for which body weight also did not differ

before start of treatment). Fasting plasma glucose (P,0.001) and

insulin (P,0.01) were significantly higher in diabetic animals

compared with lean animals, independent of treatment regimen.

Two weeks of treatment with 30, 100 or 300 mg/kg/day

metformin had no effect on body weight, fasting plasma glucose,

or fasting plasma insulin in lean or diabetic animals.

In vivo muscle mitochondrial oxidative capacity
31P MRS was applied to assess the effect of metformin treatment

on in vivo mitochondrial oxidative capacity. Representative

examples of 31P MR spectra obtained from TA muscle at rest

and after 2 minutes of electrical stimulation are shown in Figure 1A

and 1B, respectively. PCr and Pi concentrations and intracellular

pH measured in TA muscle at rest and after muscle stimulation

are listed in Table 2. End-stimulation pH was significantly higher

in diabetic animals compared with lean animals (P,0.01),

independent of treatment regimen. However, the end-stimulation

pH was higher than 7.0 for all animals and therefore did not

influence PCr recovery kinetics. A mono-exponential function was

fitted through the PCr concentrations obtained during the

recovery phase (Figure 1C), yielding the PCr recovery rate

constant, kPCr, which is representative for muscle oxidative

capacity in vivo. kPCr was 25% lower in diabetic rats compared

with lean rats, independent of treatment regimen (P,0.001)

(Figure 1D). Two weeks of treatment with metformin had a

significant effect on in in vivo muscle oxidative capacity,

independent of genotype (P,0.001). Post-hoc testing revealed

that treatment of lean and diabetic rats with 30 mg/kg/day

metformin did not affect in vivo muscle oxidative capacity when

compared with water-treated controls. However, in rats treated

with metformin at a dosage of 100 and 300 mg/kg/day, in vivo

muscle oxidative capacity was 21% (P,0.001) and 47% (P,0.001)

lower, respectively, when compared with water-treated animals.

Mitochondrial content
Skeletal muscle oxidative capacity is determined by intrinsic

mitochondrial properties, as well as the number of mitochondria

in the tissue. Relative mtDNA copy number, which was used as an

estimate of mitochondrial content, did not differ between lean and

diabetic rats (Figure 2). Moreover, metformin treatment (300 mg/

kg/day) did not affect relative mtDNA copy number.

Ex vivo mitochondrial function
In order to evaluate ex vivo intrinsic mitochondrial function after

2 weeks of oral treatment with metformin, HRR was used to

measure O2 flux in mitochondria isolated from TA muscle, using

both Complex I- and Complex II-dependent substrates.

Complex I. Complex I-dependent respiratory capacity (driv-

en by pyruvate plus malate) in the OXPHOS state was not

different between lean and diabetic animals, except at the highest

metformin dosage (300 mg/kg/day), for which OXPHOS

respiratory capacity was lower in lean rats compared with diabetic

rats (P,0.05) (Figure 3). Whereas 2 weeks of treatment with

metformin at 30 mg/kg/day did not affect Complex I-dependent

respiratory capacity in the OXPHOS state, treatment at a dosage

of 100 and 300 mg/kg/day lowered OXPHOS respiratory

capacity compared with water treatment in both lean and diabetic

animals (P,0.05). In lean animals, Complex I-dependent

OXPHOS respiratory capacity was further reduced after metfor-

min treatment at 300 mg/kg/day compared with 100 mg/kg/day

(P,0.01), but this dose-dependent effect was not significant in

diabetic animals. In lean animals, Complex I-dependent respira-

tion in the LEAK state was lower after metformin treatment when

compared with water treatment, for all metformin dosages (P,

0.05) (Figure 3). As a consequence of the concomitant changes in

OXPHOS and LEAK states in response to metformin treatment,

the RCR’s, which give an indication of the coupling efficiency

between substrate oxidation and ATP synthesis, were not affected

in lean animals (Table 3). In diabetic rats, the LEAK state was

lower in the MET100 and MET300 groups compared with the

MET30 group only (P,0.001) and the RCR was higher in the

MET100 compared with MET30 group (P,0.05). In addition, the

RCR was higher in water-treated diabetic rats compared with

water-treated lean rats (P,0.05). In lean animals, treatment with

metformin at a dosage of 300 mg/kg/day lowered Complex I-

dependent respiratory capacity in the ETS state when compared

to all other treatment regimens (P,0.01) (Figure 3). In contrast,

metformin treatment had no significant effect on Complex I-

dependent ETS respiratory capacity in diabetic rats.

Complex II. Complex II-dependent respiratory capacity

(driven by succinate plus rotenone) in the OXPHOS state was

not different between lean and diabetic animals (Figure 4).

Moreover, treatment with metformin had no effect on Complex

II-dependent OXPHOS respiratory capacity, except for diabetic

rats treated with 300 mg/kg/day metformin, for which OXPHOS

respiratory capacity was lower than for diabetic rats treated with

100 mg/kg/day metformin (P,0.01). Complex II-dependent

Metformin Impairs Muscle Mitochondrial Function
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respiration in the LEAK state (Figure 4) and RCR’s (Table 3) were

not different between groups.

Mitochondrial function after in vitro incubation with
metformin

In order to assess whether metformin would affect mitochon-

drial respiratory capacity in vitro, mitochondria were isolated from

TA muscle excised from lean and diabetic rats, and incubated with

1 mM metformin for 5 min. Complex I- and Complex II-

dependent OXPHOS respiratory capacity were then determined

and normalized to OXPHOS respiratory capacity measured in the

isolated mitochondria without addition of metformin (Figure 5).

Complex I-dependent respiratory capacity in the OXPHOS state

decreased 28% after in vitro incubation with metformin, indepen-

dent of genotype (P,0.001). In contrast, incubation of isolated

mitochondria with metformin did not affect Complex II-depen-

dent respiratory capacity.

Discussion

A number of in vitro studies have shown that metformin inhibits

Complex I of the mitochondrial respiratory chain [3–9]. However,

the significance of this inhibition for in vivo skeletal muscle

mitochondrial function has yet to be elucidated. The aim of this

study was to clarify to which extent metformin affects in vivo and ex

vivo skeletal muscle oxidative capacity. To this end we assessed the

mitochondrial response to 2 weeks of treatment with metformin (0,

30, 100 or 300 mg/kg body weight/day) in a rat model of diabetes

using 31P MRS and HRR, respectively. We showed that 2 weeks

of treatment with metformin impairs in vivo muscle oxidative

capacity in a dose-dependent manner, both in healthy and in

diabetic rats. Whereas a dosage of 30 mg/kg/day had no

significant effect, in vivo oxidative capacity was 21% and 48%

lower after 2 weeks of metformin treatment at 100 and 300 mg/

kg/day, respectively, independent of genotype. HRR measure-

ments demonstrated a similar dose-dependent effect of metformin

on ex vivo respiratory capacity with a Complex I-dependent

substrate, whereas Complex II-dependent respiratory capacity was

largely unaffected.

In contrast to the current belief that metformin has only a mild

effect on mitochondrial function [30], we observed that metformin

may severely impair skeletal muscle oxidative capacity in vivo,

depending on the dosage. Two weeks of metformin treatment at

300 mg/kg/day led to a 2-fold reduction in the rate of PCr

recovery after muscle stimulation, both in lean and diabetic rats,

which is comparable to the 40% lower PCr recovery rate found in

sedentary individuals as compared with endurance athletes, who

run a minimum of 30 miles per week [31]. At 100 mg/kg/day,

metformin had a more moderate effect on in vivo muscle oxidative

capacity, while at 30 mg/kg/day no significant effect on PCr

recovery was observed. Patients with type 2 diabetes typically

receive an oral dose of metformin of approximately 30 mg/kg/

day. It should be noted though that the bioavailability of

metformin in the systemic circulation after oral treatment is lower

in rats (F = 30%, [22]) compared with patients (F = 56%, [32]).

Therefore treatment with ,100–300 mg/kg/day metformin in

rats is considered to be more clinically relevant, also because

therapeutic effects of metformin treatment in rats at that dosage

are similar to the effects in patients treated with 30 mg/kg/day

metformin [3,16–21]. It thus seems likely that patients with type 2

diabetes, possibly already featuring some level of mitochondrial

impairment, will be affected in daily life functioning or when

performing exercise as a consequence of treatment with metfor-

min. Interestingly, Braun et al. observed a small but significant

(2.7%) decrease in whole-body peak aerobic capacity (peak VO2)

in healthy volunteers after 9–12 days of treatment with 2000 mg/

day (which equals 30 mg/kg body weight/day) metformin [30].

Moreover, a study by Sharoff et al. demonstrated that exercise-

induced improvement of whole-body insulin sensitivity is lost in

insulin-resistant individuals taking metformin [15]. Their findings

essentially imply that metformin treatment in these patients limits

their ability to improve their peripheral insulin sensitivity through

exercise.

In vivo skeletal muscle oxidative capacity is determined by

intrinsic mitochondrial function as well as mitochondrial content.

However, we did not find a difference in relative mtDNA copy

number or PGC-1a protein expression (not shown) between rats

treated with metformin (300 mg/kg/day) and water-treated

controls, which implies that the observed reduction in in vivo

Table 1. Animal characteristics of lean and diabetic ZDF rats after 2 weeks of treatment with water or 30, 100 or 300 mg/kg body
weight/day metformin (MET30, MET100 and MET300, respectively).

Body weight (g) Fasting glucose (mM) Fasting insulin (pM)

Lean

Water 366611 4.060.6 297699

MET30 360618 4.961.2 205663

MET100 337631 4.160.3 213660

MET300 341623 4.461.1 184642

Diabetic

Water 380617 14.261.2 240650

MET30 406611## 13.265.5 3296128

MET100 386615### 14.761.7 4026166

MET300 409627### 15.160.8 4406164

Data is represented as mean 6 SD (n = 6 per group). Fasting plasma glucose (ANOVA: P,0.001) and insulin (ANOVA: P,0.01) were significantly higher in diabetic
animals compared with lean animals, independent of treatment regimen. For body weight, the interaction between genotype and treatment was significant and a
pairwise analysis of differences is provided by Bonferroni-corrected two-sided unpaired t-tests: ## P,0.01, ### P,0.001 when compared with lean animals of the same
treatment regimen.
doi:10.1371/journal.pone.0100525.t001
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skeletal muscle oxidative capacity after metformin treatment is not

caused by a decrease in mitochondrial content. In fact, Suwa et al.

[33] reported enhanced protein expression of PGC-1a and

increased citrate synthase activity in Wistar rats after 2 weeks of

treatment with metformin, suggesting a stimulation of mitochon-

drial biogenesis. However, the dosage regimen used in that study

was twice as high as the highest dosage used in the present study,

which might explain why we did not observe an effect on

mitochondrial biogenesis. Our results are in agreement with other

rodent studies showing that 2 or 4 weeks of metformin treatment

at ,300 mg/kg/day does not lead to increased activity of citrate

synthase [21,34].

In order to evaluate intrinsic mitochondrial function, we

performed HRR measurements in isolated muscle mitochondria

from rats treated with metformin using both Complex I- and

Complex II-dependent substrates. Two weeks of treatment with

metformin affected Complex I-dependent respiratory capacity in

the OXPHOS state, similar to the dose-dependent effect observed

for in vivo muscle oxidative capacity. At 300 mg/kg/day, Complex

I-dependent respiratory capacity in the OXPHOS state was

,40% lower than in water-treated controls, which is comparable

to the 48% reduction in in vivo muscle oxidative capacity. For lean

rats, the effect of metformin on Complex I-dependent respiratory

capacity in the OXPHOS state was similar to that in the ETS

Figure 1. In vivo oxidative capacity of tibialis anterior (TA) muscle, assessed by 31P MRS. Representative examples of 31P MR spectra
obtained during rest with 32 averages (A) and at the end of the electrical-stimulation protocol with 4 averages (B). (C) Representative examples of
relative PCr concentrations during rest, muscle stimulation and recovery (time resolution = 20 s) for a water-treated diabetic rat (open symbols) and
a diabetic rat treated with metformin at 300 mg/kg body weight/day (filled symbols). PCr concentrations are expressed as a percentage of the resting
PCr concentration. Mono-exponential functions (dark lines) were fit to the recovery data and the PCr recovery rate constants were 0.63 and 0.21 min-1

for the water-treated and metformin-treated animal, respectively. (D) Rate constants of PCr recovery, kPCr, after electrical stimulation in TA muscle of
lean and diabetic rats treated with water or 30, 100 or 300 mg/kg body weight/day metformin (MET30, MET100 and MET300 respectively). Data is
represented as mean 6 SD (n = 6 per group). kPCr was significantly lower in diabetic rats compared with lean rats, independent of treatment regimen
(ANOVA: P,0.001). In addition, treatment had a significant effect on kPCr, independent of genotype, and a pairwise analysis of differences is provided
by Bonferroni-corrected post-hoc tests: * P,0.001 when compared with water-treated animals, { P,0.001 when compared with MET30-treated
animals, ` P,0.001 when compared with MET100-treated animals.
doi:10.1371/journal.pone.0100525.g001
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state, indicating that the effect of metformin is confined to the

respiratory chain. Moreover, metformin did not increase respira-

tion in the LEAK state. Therefore, it seems that the effect of

metformin on in vivo muscle oxidative capacity can be fully

explained by its inhibition of Complex I-dependent respiration.

The inhibitory action of metformin on Complex I-dependent

respiration has been demonstrated before in in vitro studies, in

which isolated mitochondria from rat liver [3–5] and skeletal

muscle [4], as well as permeabilized cells [3,6,7] were incubated

with metformin. Reports on Complex I activity in cultured cells

further support an inhibitory effect of metformin on Complex I

[4,7]. In contrast, other ex vivo animal studies reported no effects on

the respiratory capacity of permeabilized muscle fibers obtained

from the oxidative part of the gastrocnemius of obese Zucker rats

after 4 weeks of treatment with metformin (320 mg/kg/day) [34]

and the predominantly glycolytic TA of wild type mice after 2

weeks of treatment with metformin (300 mg/kg/day) [21].

Likewise, it was shown that in permeabilized vastus lateralis muscle

fibers of type 2 diabetes patients treated with metformin

(20006200 mg/day) Complex I-dependent respiratory capacity

was not different compared with healthy control subjects,

indicating that mitochondrial Complex I respiration is not

inhibited by metformin [35]. Surprisingly, in L6 muscle cell

cultures [36] and in skeletal muscle of kinase dead AMPK mice

[21] metformin even increased mitochondrial energy formation.

The discrepancies across the literature could be caused by

differences in species, dosing regimens, muscle fiber types, and

the methods used to determine the effect of metformin on the

mitochondria. However, when comparing our results with the ex

vivo animal studies of Kane et al. [34] and Kristensen et al. [21], in

which metformin did not affect mitochondrial respiration in either

oxidative or glycolytic muscle from rats or mice after 2–4 weeks of

metformin treatment at ,300 mg/kg/day, it seems that all except

methodological differences can be excluded. In the current study

mitochondria were isolated from a whole TA muscle to allow

comparison with the in vivo data, while Kane et al. and Kristensen

et al. used permeabilized muscle fibers. It has recently been

reported that the respiratory response in permeabilized fibers can

be different from that of isolated mitochondria [37].

In this study, Complex II-dependent OXPHOS respiratory

capacity was largely unaffected by metformin treatment. This is in

agreement with previous reports showing that metformin has no

effect on Complex II-dependent respiratory capacity [4,6]. Schäfer

and Rieger postulated that metformin inhibits the activity of the

oxidative phosphorylation enzymes by binding to the mitochon-

drial membrane phospholipids and modifying physicochemical

membrane properties [10]. Following this reasoning, it is not

Figure 2. Relative mitochondrial-DNA copy number of lean and
diabetic rats after 2 weeks of treatment with either water or
metformin (300 mg/kg bodyweight/day). Data is represented as
mean 6 SD (n = 6 per group).
doi:10.1371/journal.pone.0100525.g002

Figure 3. O2 consumption rates determined in mitochondria isolated from TA muscle of lean and diabetic rats treated with water or
30, 100 or 300 mg/kg body weight/day metformin (MET30, MET100 and MET300, respectively) for 2 weeks, fueled by pyruvate plus
malate (Complex I-dependent substrate). Respiratory capacity was determined in the OXPHOS state, when mitochondrial respiration is coupled
to ATP synthesis; the LEAK-state, when the system is limited by ADP; and the ETS state, after uncoupling of the ETS from ATP synthesis. Data is
represented as mean 6 SD (n = 6 per group). For the OXPHOS state, the interaction between genotype and treatment was borderline significant and
for the LEAK and ETS state, the interaction between genotype and treatment was significant. A pairwise analysis of differences is provided by
Bonferroni-corrected two-sided unpaired t-tests: * P,0.05 when compared with water-treated animals of the same genotype, { P,0.05 when
compared with MET30-treated animals of the same genotype, ` P,0.05 when compared with MET100-treated animals of the same genotype, # P,

0.05 when compared with lean animals of the same treatment regimen.
doi:10.1371/journal.pone.0100525.g003

Metformin Impairs Muscle Mitochondrial Function

PLOS ONE | www.plosone.org 7 June 2014 | Volume 9 | Issue 6 | e100525



surprising that the activity of Complex I, the largest and most

complex enzyme among the enzymes involved in the oxidative

phosphorylation pathway, is impaired the most by metformin. Our

observation that Complex II-dependent OXPHOS capacity in

mitochondria from diabetic rats treated with 300 mg/kg/day

metformin was lower than for diabetic rats treated with 100 mg/

kg/day metformin suggests that the activity of Complex II or of

downstream electron transport chain complexes (i.e Complex III

and/or IV) is impaired by a high dosage of metformin. This

inhibitory effect could be partially caused by a progressively larger

derangement of the inner mitochondrial membrane by a high

concentration of metformin [10], impairing the activity of smaller

ETC complexes. Possibly, mitochondria from skeletal muscle of

diabetic animals are more sensitive to the toxic metformin effect

due to other factors related to the diseased environment, since we

do not observe inhibition of Complex II-dependent respiration in

mitochondria from lean animals. However, our results on

Complex I-dependent respiration do not support the notion that

mitochondria from diabetic muscle are more sensitive to

metformin-induced membrane derangements.

Although it is well established that metformin attenuates

Complex I-dependent respiratory capacity, the mechanism

through which metformin exerts its inhibitory action on Complex

I is still subject of debate. A number of reports propose an indirect

pathway, involving cell membrane events, via which metformin

affects mitochondrial respiration [6,8]. This is based on the

Table 3. Respiratory control ratios (RCR’s) in mitochondria isolated from TA muscle of lean and diabetic rats treated with water or
30, 100 or 300 mg/kg body weight/day metformin (MET30, MET100 and MET300, respectively) for 2 weeks, fueled by pyruvate plus
malate (Complex I-dependent substrate) and succinate plus rotenone (Complex II-dependent substrate).

RCR Pyruvate (2)
RCR
Succinate (2)

Lean

Water 11.065.1 3.960.4

MET30 15.766.7 4.361.3

MET100 18.063.5 4.660.8

MET300 11.464.2 4.560.7

Diabetic

Water 17.664.7# 4.260.6

MET30 10.462.3 4.461.0

MET100 20.166.9{ 4.860.6

MET300 15.561.4 4.460.7

Data is represented as mean 6 SD (n = 6 per group). For the RCR with pyruvate, the interaction between genotype and treatment was significant and a pairwise analysis
of differences is provided by Bonferroni-corrected two-sided unpaired t-tests: # P,0.05 when compared with lean animals of the same treatment regimen,{ P,0.05
when compared with MET30-treated animals of the same genotype.
doi:10.1371/journal.pone.0100525.t003

Figure 4. O2 consumption rates determined in mitochondria isolated from TA muscle of lean and diabetic rats treated with water or
30, 100 or 300 mg/kg body weight/day metformin (MET30, MET100 and MET300 respectively) for 2 weeks, fueled by succinate plus
rotenone (Complex II-dependent substrate). Respiratory capacity was determined in the OXPHOS state, when mitochondrial respiration is
coupled to ATP synthesis; and the LEAK-state, when the system is limited by ADP. Data is represented as mean 6 SD (n = 6 per group). For the
OXPHOS state, the interaction between genotype and treatment was significant and a pairwise analysis of differences is provided by Bonferroni-
corrected two-sided unpaired t-tests: ` P,0.05 when compared with MET100-treated animals of the same genotype.
doi:10.1371/journal.pone.0100525.g004
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observation that inhibition of Complex I is lost when metformin is

added to mitochondria isolated from their cellular environment

[6] or when metformin is micro-injected into the interior of an

intact oocyte, suggesting membrane-mediated events are necessary

for this effect to occur [6,8]. Others, however, have shown that

metformin does inhibit Complex I in mitochondria isolated from

skeletal muscle and liver [3,4], thus contradicting the suggestion

that an intact cell is needed for metformin to exert its effect on

mitochondrial function. Early work of Schäfer and Rieger [10]

showed that biguanides have an affinity to directly bind to

mitochondrial membrane phospholipids, causing the accumula-

tion of positive charge at the membrane surface, thereby rendering

the electrostatic surface potential more positive. This will alter the

physicochemical properties of the mitochondrial membrane,

which may underlie the inhibition of metformin of Complex I

and which supports a direct pathway for metformin to affect

mitochondria. In order to determine whether metformin affects

mitochondrial respiratory capacity via a direct or indirect

pathway, we studied mitochondrial respiration after incubating

isolated mitochondria with 1 mM metformin for 5 min. We

observed a 28% inhibition of Complex I-dependent respiratory

capacity, whereas Complex II-dependent respiratory capacity was

unaffected. Our findings thus imply that metformin inhibits

mitochondrial respiration through Complex I via a direct

pathway.

Apart from the effects of metformin on muscle mitochondrial

function, we observed that in vivo muscle oxidative capacity was

25% lower in diabetic rats compared with lean control animals,

independent of treatment regimen. However, relative mtDNA

copy number and Complex I- and Complex II-dependent

respiratory capacity were similar between diabetic and lean

animals, which implies that neither a lower mitochondrial content

nor an impairment of their ex vivo intrinsic function can account for

the lower in vivo muscle oxidative capacity in diabetic rats. Instead,

it suggests that in diabetic muscle the functioning of mitochondria

in their natural cellular environment is impaired by factors that are

not taken into account during the ex vivo measurements in isolated

mitochondria, such as lipid-induced mitochondrial uncoupling

[27].

The beneficial effects of metformin on glucose homeostasis are

well established both in patient and animal studies [19,34,38–41].

However, in this study no changes in fasting plasma levels of

glucose or insulin were observed in any of the animal groups after

2 weeks of treatment with metformin. It should be noted, though,

that the therapy duration in our study was shorter than in the

animal studies in which improved glucose tolerance was observed

(typically 3 to 4 weeks) [34], which might explain why plasma

parameters were unaffected in our study.

There are indications that the inhibition of Complex I

contributes to metformin’s therapeutic efficacy. It is well-known

that metformin lowers blood glucose levels primarily by lowering

glucose production in the liver, which is an ATP-dependent

process. Therefore it is possible that the reduction of mitochon-

drial oxidative capacity underlies the mechanism through which

metformin suppresses glucose release from the liver [39].

Moreover, there are several reports indicating that metformin

promotes glucose uptake in peripheral tissues, thus contributing to

its antihyperglycemic efficacy. This could be conciliated with its

action on mitochondria by the ‘‘energy charge hypothesis’’

postulated by Brunmair et al. [4]. This hypothesis states that

agents that interfere with Complex I-dependent cellular respira-

tion affect enzymes like AMP-dependent protein kinase and hence

induce a metabolic response, such as increased glucose uptake and

glycolysis, to compensate for decreased ATP synthesis rates [3,4].

In conclusion, we demonstrated that 2 weeks of treatment with

metformin compromised in vivo and ex vivo muscle oxidative

capacity in ZDF rats in a dose-dependent manner. Moreover, our

finding that also in vitro incubation of isolated mitochondria with

metformin lowers Complex I-dependent respiratory capacity

supports the hypothesis that metformin inhibits Complex I via a

direct pathway.
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