61 research outputs found

    Theoretical analysis of resonance states in 4H^{4}H, 4He^{4}He and 4Li^{4}Li above three-cluster threshold

    Full text link
    The resonance states of 4H^{4}H, 4He^{4}He and 4Li^{4}Li, embedded in the three-cluster d+N+Nd+N+N continuum, are investigated within a three-cluster model. The model treats the Pauli principle exactly and incorporates the Faddeev components for proper description of the boundary conditions for the two- and three-body continua. The hyperspherical harmonics are used to distinguish and numerate channels of the three-cluster continuum. It is shown that the effective barrier, created by three-cluster configuration d+N+Nd+N+N, is strong enough to accommodate two resonance states.Comment: 20 page, 4 figure

    Resource Pricing In A Dynamic Multi-Commodity Market For Computational Resources

    Full text link
    The adoption of market-based principles in resource management systems for computational infrastructures such as grids and clusters allows for matching demand and supply for resources in a utility maximizing manner. As such, they offer a promise of producing more efficient resource allocations, compared to traditional system-centric approaches that do not allow consumers and providers to express their valuations for computational resources. In this paper, we investigate the pricing of resources in grids through the use of a computational commodity market of CPU resources, where resource prices are determined through the computation of a supply-and-demand equilibrium. In particular, we introduce several categories of CPUs characterized by their execution speed. These differ in cost and performance but may be used interchangeably in executing jobs and thus represent so-called substitutable resources. We investigate the performance of the algorithms for computing the supply-and-demand equilibrium in this multi-commodity setting under dynamically varying consumer and provider populations.Comment: 14 Pages, IJCNC Journa

    Algebraic Model for scattering of three-s-cluster systems; 2, Resonances in the three-cluster continuum of 6He and 6Be

    Get PDF
    The resonance states embedded in the three-cluster continuum of 6He and 6Be are obtained in the Algebraic Version of the Resonating Group Method. The model accounts for a correct treatment of the Pauli principle. It also provides the correct three-cluster continuum boundary conditions by using a Hyperspherical Harmonics basis. The model reproduces the observed resonances well and achieves good agreement with other models. A better understanding for the process of formation and decay of the resonance states in six-nucleon systems is obtained

    Taming the Yukawa potential singularity: improved evaluation of bound states and resonance energies

    Full text link
    Using the tools of the J-matrix method, we absorb the 1/r singularity of the Yukawa potential in the reference Hamiltonian, which is handled analytically. The remaining part, which is bound and regular everywhere, is treated by an efficient numerical scheme in a suitable basis using Gauss quadrature approximation. Analysis of resonance energies and bound states spectrum is performed using the complex scaling method, where we show their trajectories in the complex energy plane and demonstrate the remarkable fact that bound states cross over into resonance states by varying the potential parameters.Comment: 8 pages, 2 tables, 1 figure. 2 mpg videos and 1 pdf table file are available upon request from the corresponding Autho

    A Microscopic Cluster Description of 12C

    Full text link
    We investigate both bound and resonance states in 12C embedded in a three-\alpha-cluster continuum using two distinct three-cluster microscopic models. The first one relies on the Hyperspherical Harmonics basis to enumerate the channels describing the three-cluster continuum. The second model incorporates both Gaussian and Oscillator basis functions, and reduces the three-cluster problem to a two-cluster one, in which a two-cluster subsystem is described by a set of pseudo-bound state states. It is shown that the results agree well with comparable calculations from the literature.Comment: 31 pages, 12 figures, 9 table

    Algebraic Model for scattering of three-s-cluster systems. II. Resonances in the three-cluster continuum of 6He and 6Be

    Get PDF
    The resonance states embedded in the three-cluster continuum of 6He and 6Be are obtained in the Algebraic Version of the Resonating Group Method. The model accounts for a correct treatment of the Pauli principle. It also provides the correct three-cluster continuum boundary conditions by using a Hyperspherical Harmonics basis. The model reproduces the observed resonances well and achieves good agreement with other models. A better understanding for the process of formation and decay of the resonance states in six-nucleon systems is obtained.Comment: 8 pages, 10 postscript figures, submitted to Phys. Rev.

    Resonances in three-claster continuum of 5H nucleus

    Get PDF
    The resonance structure of 5H is investigated within a three-cluster microscopic model. Hyperspherical Harmonics are used to characterize the channels of the three-cluster continuum and to implement the appropriate boundary conditions. The model predicts the energy and width of the 5H resonance states well and allows for a detailed channel analysis
    • …
    corecore