6,846 research outputs found

    Dynamical state reduction in an EPR experiment

    Full text link
    A model is developed to describe state reduction in an EPR experiment as a continuous, relativistically-invariant, dynamical process. The system under consideration consists of two entangled isospin particles each of which undergo isospin measurements at spacelike separated locations. The equations of motion take the form of stochastic differential equations. These equations are solved explicitly in terms of random variables with a priori known probability distribution in the physical probability measure. In the course of solving these equations a correspondence is made between the state reduction process and the problem of classical nonlinear filtering. It is shown that the solution is covariant, violates Bell inequalities, and does not permit superluminal signaling. It is demonstrated that the model is not governed by the Free Will Theorem and it is argued that the claims of Conway and Kochen, that there can be no relativistic theory providing a mechanism for state reduction, are false.Comment: 19 pages, 3 figure

    Hidden variable interpretation of spontaneous localization theory

    Full text link
    The spontaneous localization theory of Ghirardi, Rimini, and Weber (GRW) is a theory in which wavepacket reduction is treated as a genuine physical process. Here it is shown that the mathematical formalism of GRW can be given an interpretation in terms of an evolving distribution of particles on configuration space similar to Bohmian mechanics (BM). The GRW wavefunction acts as a pilot wave for the set of particles. In addition, a continuous stream of noisy information concerning the precise whereabouts of the particles must be specified. Nonlinear filtering techniques are used to determine the dynamics of the distribution of particles conditional on this noisy information and consistency with the GRW wavefunction dynamics is demonstrated. Viewing this development as a hybrid BM-GRW theory, it is argued that, besides helping to clarify the relationship between the GRW theory and BM, its merits make it worth considering in its own right.Comment: 13 page

    Conidial germination in scon\u3csup\u3ec\u3c/sup\u3e

    Get PDF
    Conidial germination in scon

    The EPR experiment in the energy-based stochastic reduction framework

    Full text link
    We consider the EPR experiment in the energy-based stochastic reduction framework. A gedanken set up is constructed to model the interaction of the particles with the measurement devices. The evolution of particles' density matrix is analytically derived. We compute the dependence of the disentanglement rate on the parameters of the model, and study the dependence of the outcome probabilities on the noise trajectories. Finally, we argue that these trajectories can be regarded as non-local hidden variables.Comment: 11 pages, 5 figure

    On the dominance of J(P)=0(+) ground states in even-even nuclei from random two-body interactions

    Get PDF
    Recent calculations using random two-body interactions showed a preponderance of J(P)=0(+) ground states, despite the fact that there is no strong pairing character in the force. We carry out an analysis of a system of identical particles occupying orbits with j=1/2, 3/2 and 5/2 and discuss some general features of the spectra derived from random two-body interactions. We show that for random two-body interactions that are not time-reversal invariant the dominance of 0(+) states in this case is more pronounced, indicating that time-reversal invariance cannot be the origin of the 0(+) dominance.Comment: 8 pages, 3 tables and 3 figures. Phys. Rev. C, in pres

    Inferring Networks of Substitutable and Complementary Products

    Full text link
    In a modern recommender system, it is important to understand how products relate to each other. For example, while a user is looking for mobile phones, it might make sense to recommend other phones, but once they buy a phone, we might instead want to recommend batteries, cases, or chargers. These two types of recommendations are referred to as substitutes and complements: substitutes are products that can be purchased instead of each other, while complements are products that can be purchased in addition to each other. Here we develop a method to infer networks of substitutable and complementary products. We formulate this as a supervised link prediction task, where we learn the semantics of substitutes and complements from data associated with products. The primary source of data we use is the text of product reviews, though our method also makes use of features such as ratings, specifications, prices, and brands. Methodologically, we build topic models that are trained to automatically discover topics from text that are successful at predicting and explaining such relationships. Experimentally, we evaluate our system on the Amazon product catalog, a large dataset consisting of 9 million products, 237 million links, and 144 million reviews.Comment: 12 pages, 6 figure

    Martingale Models for Quantum State Reduction

    Get PDF
    Stochastic models for quantum state reduction give rise to statistical laws that are in most respects in agreement with those of quantum measurement theory. Here we examine the correspondence of the two theories in detail, making a systematic use of the methods of martingale theory. An analysis is carried out to determine the magnitude of the fluctuations experienced by the expectation of the observable during the course of the reduction process and an upper bound is established for the ensemble average of the greatest fluctuations incurred. We consider the general projection postulate of L\"uders applicable in the case of a possibly degenerate eigenvalue spectrum, and derive this result rigorously from the underlying stochastic dynamics for state reduction in the case of both a pure and a mixed initial state. We also analyse the associated Lindblad equation for the evolution of the density matrix, and obtain an exact time-dependent solution for the state reduction that explicitly exhibits the transition from a general initial density matrix to the L\"uders density matrix. Finally, we apply Girsanov's theorem to derive a set of simple formulae for the dynamics of the state in terms of a family of geometric Brownian motions, thereby constructing an explicit unravelling of the Lindblad equation.Comment: 30 pages LaTeX. Submitted to Journal of Physics

    Quantum noise and stochastic reduction

    Full text link
    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schrodinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this article, two such models are investigated: one that achieves state reduction in infinite time, and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions--algebraic in character and involving no integration--are obtained for both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system, and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems.Comment: 50 page
    corecore