416 research outputs found

    Coquaternionic quantum dynamics for two-level systems

    Get PDF
    The dynamical aspects of a spin- 1/2 particle in Hermitian coquaternionic quantum theory is investigated. It is shown that the time evolution exhibits three di erent characteristics, depending on the values of the parameters of the Hamiltonian. When energy eigenvalues are real, the evolution is either isomorphic to that of a complex Hermitian theory on a spherical state space, or else it remains unitary along an open orbit on a hyperbolic state space. When energy eigenvalues form a complex conjugate pair, the orbit of the time evolution closes again even though the state space is hyperbolic

    Universal quantum measurements

    Get PDF
    We introduce a family of operations in quantum mechanics that one can regard as "universal quantum measurements" (UQMs). These measurements are applicable to all finite dimensional quantum systems and entail the specification of only a minimal amount of structure. The first class of UQM that we consider involves the specification of the initial state of the system—no further structure is brought into play. We call operations of this type "tomographic measurements", since given the statistics of the outcomes one can deduce the original state of the system. Next, we construct a disentangling operation, the outcome of which, when the procedure is applied to a general mixed state of an entangled composite system, is a disentangled product of pure constituent states. This operation exists whenever the dimension of the Hilbert space is not a prime, and can be used to model the decay of a composite system. As another example, we show how one can make a measurement of the direction along which the spin of a particle of spin s is oriented (s = 1/2, 1,...). The required additional structure in this case involves the embedding of CP^1 as a rational curve of degree 2s in CP^2s

    Time-optimal navigation through quantum wind

    Get PDF
    The quantum navigation problem of finding the time-optimal control Hamiltonian that transports a given initial state to a target state through quantum wind, that is, under the influence of external fields or potentials, is analysed. By lifting the problem from the state space to the space of unitary gates realising the required task, we are able to deduce the form of the solution to the problem by deriving a universal quantum speed limit. The expression thus obtained indicates that further simplifications of this apparently difficult problem are possible if we switch to the interaction picture of quantum mechanics. A complete solution to the navigation problem for an arbitrary quantum system is then obtained, and the behaviour of the solution is illustrated in the case of a two-level system

    Quantum splines

    Get PDF
    A quantum spline is a smooth curve parameterised by time in the space of unitary transformations, whose associated orbit on the space of pure states traverses a designated set of quantum states at designated times, such that the trace norm of the time rate of change of the associated Hamiltonian is minimised. The solution to the quantum spline problem is obtained, and is applied in an example that illustrates quantum control of coherent states. An e cient numerical scheme for computing quantum splines is discussed and implemented in the examples

    Consistency of PT-symmetric quantum mechanics

    Get PDF
    In recent reports, suggestions have been put forward to the effect that parity and time-reversal (PT) symmetry in quantum mechanics is incompatible with causality. It is shown here, in contrast, that PT-symmetric quantum mechanics is fully consistent with standard quantum mechanics. This follows from the surprising fact that the much-discussed metric operator on Hilbert space is not physically observable. In particular, for closed quantum systems in finite dimensions there is no statistical test that one can perform on the outcomes of measurements to determine whether the Hamiltonian is Hermitian in the conventional sense, or PT-symmetric---the two theories are indistinguishable. Nontrivial physical effects arising as a consequence of PT symmetry are expected to be observed, nevertheless, for open quantum systems with balanced gain and loss.Quantum (and Classical) Physics with Non-Hermitian Operators, Jerusale

    Informed traders

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2008 The Royal Society.An asymmetric information model is introduced for the situation in which there is a small agent who is more susceptible to the flow of information in the market than the general market participant, and who tries to implement strategies based on the additional information. In this model market participants have access to a stream of noisy information concerning the future return of an asset, whereas the informed trader has access to a further information source which is obscured by an additional noise that may be correlated with the market noise. The informed trader uses the extraneous information source to seek statistical arbitrage opportunities, while at the same time accommodating the additional risk. The amount of information available to the general market participant concerning the asset return is measured by the mutual information of the asset price and the associated cash flow. The worth of the additional information source is then measured in terms of the difference of mutual information between the general market participant and the informed trader. This difference is shown to be non-negative when the signal-to-noise ratio of the information flow is known in advance. Explicit trading strategies leading to statistical arbitrage opportunities, taking advantage of the additional information, are constructed, illustrating how excess information can be translated into profit

    Twistor cosmology and quantum space-time

    Get PDF
    The purpose of this paper is to present a model of a quantum space-time in which the global symmetries of space-time are unified in a coherent manner with the internal symmetries associated with the state space of quantum-mechanics. If we take into account the fact that these distinct families of symmetries should in some sense merge and become essentially indistinguishable in the unified regime, our framework may provide an approximate description of or elementary model for the structure of the universe at early times
    corecore