221 research outputs found

    The running coupling method with next-to-leading order accuracy and pion, kaon elm form factors

    Full text link
    The pion and kaon electromagnetic form factors FM(Q2)F_M(Q^2) are calculated at the leading order of pQCD using the running coupling constant method. In calculations the leading and next-to-leading order terms in αS((1−x)(1−y)Q2)\alpha_S((1-x)(1-y)Q^2) expansion in terms of αS(Q2)\alpha_S(Q^2) are taken into account. The resummed expression for FM(Q2)F_M(Q^2) is found. Results of numerical calculations for the pion (asymptotic distribution amplitude) are presented.Comment: 9 pages, 1 figur

    Pion Form Factor in the kTk_T Factorization Formalism

    Full text link
    Based on the light-cone (LC) framework and the kTk_T factorization formalism, the transverse momentum effects and the different helicity components' contributions to the pion form factor Fπ(Q2)F_{\pi}(Q^2) are recalculated. In particular, the contribution to the pion form factor from the higher helicity components (λ1+λ2=±1\lambda_1+\lambda_2=\pm 1), which come from the spin-space Wigner rotation, are analyzed in the soft and hard energy regions respectively. Our results show that the right power behavior of the hard contribution from the higher helicity components can only be obtained by fully keeping the kTk_T dependence in the hard amplitude, and that the kTk_T dependence in LC wave function affects the hard and soft contributions substantially. As an example, we employ a model LC wave function to calculate the pion form factor and then compare the numerical predictions with the experimental data. It is shown that the soft contribution is less important at the intermediate energy region.Comment: 21 pages, 4 figure

    Large corrections to asymptotic FηcγF_{\eta_c \gamma} and FηbγF_{\eta_b \gamma} in the light-cone perturbative QCD

    Full text link
    The large-Q2Q^2 behavior of ηc\eta_c-γ\gamma and ηb\eta_b-γ\gamma transition form factors, Fηcγ(Q2)F_{\eta_c\gamma}(Q^2) and Fηbγ(Q2)F_{\eta_b\gamma}(Q^2) are analyzed in the framework of light-cone perturbative QCD with the heavy quark (cc and bb) mass effect, the parton's transverse momentum dependence and the higher helicity components in the light-cone wave function are respected. It is pointed out that the quark mass effect brings significant modifications to the asymptotic predictions of the transition form factors in a rather broad energy region, and this modification is much severer for Fηbγ(Q2)F_{\eta_b\gamma}(Q^2) than that for Fηcγ(Q2)F_{\eta_c\gamma}(Q^2) due to the bb-quark being heavier than the cc-quark. The parton's transverse momentum and the higher helicity components are another two factors which decrease the perturbative predictions. For the transition form factor Fηcγ(Q2)F_{\eta_c\gamma}(Q^2), they bring sizable corrections in the present experimentally accessible energy region (Q2≤10GeV2Q^2 \leq 10 GeV^2). For the transition form factor Fηbγ(Q2)F_{\eta_b\gamma}(Q^2), the corrections coming from these two factors are negligible since the bb-quark mass is much larger than the parton's average transverse momentum. The coming e+e−e^+ e^- collider (LEP2) will provide the opportunity to examine these theoretical predictions.Comment: 8 pages, RevTex, 5 PostScript figure

    Light-Front-Quantized QCD in Covariant Gauge

    Get PDF
    The light-front (LF) canonical quantization of quantum chromodynamics in covariant gauge is discussed. The Dirac procedure is used to eliminate the constraints in the gauge-fixed front form theory quantum action and to construct the LF Hamiltonian formulation. The physical degrees of freedom emerge naturally. The propagator of the dynamical ψ+\psi_+ part of the free fermionic propagator in the LF quantized field theory is shown to be causal and not to contain instantaneous terms. Since the relevant propagators in the covariant gauge formulation are causal, rotational invariance---including the Coulomb potential in the static limit---can be recovered, avoiding the difficulties encountered in light-cone gauge. The Wick rotation may also be performed allowing the conversion of momentum space integrals into Euclidean space forms. Some explicit computations are done in quantum electrodynamics to illustrate the equivalence of front form theory with the conventional covariant formulation. LF quantization thus provides a consistent formulation of gauge theory, despite the fact that the hyperplanes x±=0x^{\pm}=0 used to impose boundary conditions constitute characteristic surfaces of a hyperbolic partial differential equation.Comment: LaTex, 16 page

    Fixing the renormalisation scheme in NNLO perturbative QCD using conformal limit arguments

    Get PDF
    We discuss how the renormalisation scheme ambiguities in QCD can be fixed, when two observables are related, by requiring the coefficients in the perturbative expansion relating the two observables to have their conformal limit values, i.e. to be independent of the β\beta-function of the renormalised coupling. We show how the next-to-leading order BLM automatic scale fixing method can be extended to next-to-next-to-leading order to fix both the renormalisation scale and β2\beta_2 in a unique way. As an example we apply the method to the relation between Bjorken's sum rule and Re+e−R_{e+e-} and compare with experimental data as well as other scheme fixing methods.Comment: 14 pages LaTeX, uses revtex.sty, 1 encapsulated PostScript figur

    Optimal Renormalization Scale and Scheme for Exclusive Processes

    Get PDF
    We use the BLM method to fix the renormalization scale of the QCD coupling in exclusive hadronic amplitudes such as the pion form factor and the photon-to-pion transition form factor at large momentum transfer. Renormalization-scheme-independent commensurate scale relations are established which connect the hard scattering subprocess amplitudes that control exclusive processes to other QCD observables such as the heavy quark potential and the electron-positron annihilation cross section. The commensurate scale relation connecting the heavy quark potential, as determined from lattice gauge theory, to the photon-to-pion transition form factor is in excellent agreement with γe→π0e\gamma e \to \pi^0 e data assuming that the pion distribution amplitude is close to its asymptotic form 3fπx(1−x)\sqrt{3}f_\pi x(1-x). We also reproduce the scaling and normalization of the γγ→π+π−\gamma \gamma \to \pi^+ \pi^- data at large momentum transfer. Because the renormalization scale is small, we argue that the effective coupling is nearly constant, thus accounting for the nominal scaling behavior of the data. However, the normalization of the space-like pion form factor Fπ(Q2)F_\pi(Q^2) obtained from electroproduction experiments is somewhat higher than that predicted by the corresponding commensurate scale relation. This discrepancy may be due to systematic errors introduced by the extrapolation of the γ∗p→π+n\gamma^* p \to \pi^+ n electroproduction data to the pion pole.Comment: 22 pages, Latex, 7 Latex figures. Several references added, discussion of scale fixing revised for clarity. Final version to appear in Phys. Rev.

    Consistent Analysis of O(\alpha_s) Corrections to Pion Elastic Form Factor

    Full text link
    We examine the role of O(\alpha_s) perturbative corrections to the pion elastic form factor F_\pi(Q^2). We express the quark current three-point function in terms of light cone variables and use Borel transformation to simultaneously model the Feynman mechanism contribution determined by the soft part of the pion light cone wave function and the hard term involving one gluon exchange. We find that for Q^2 \sim 5 GeV^2 the total one gluon exchange contribution may reach 40% of the soft contribution, even though its hard, factorization scale dependent part remains relatively small.Comment: 15 pages; version to appear in Phys. Rev.
    • …
    corecore