3,413 research outputs found

    Classical sum rules and spin correlations in photoabsorption and photoproduction processes

    Get PDF
    In this paper we study the possibility of generalizing the classical photoabsorption (γa→bc\gamma a \to b c) sum rules, to processes bc→γab c \to \gamma a and crossed helicity amplitudes. In the first case, using detailed balance, the sum rule is written as ∫νth∞dννKΔσBorn(ν)=0\int_{\nu_{th}}^\infty {\frac{{d\nu}}{\nu}} K\Delta \sigma_{Born} (\nu)=0 where KK is a kinematical constant which depends only on the mass of the particles and the center of mass energy. For other crossed helicity amplitudes, we show that there is a range of values of ss and tt for which the differential cross section for the process γb→ac\gamma b \to a c or ac→γba c \to \gamma b in which the helicities of the photon and particle aa have specific values, is equal to the differential cross section for the process in which one of these two helicities is reversed (parallel-antiparallel spin correlation).Comment: 9 pages, 2 figure

    AdS/QCD and Light Front Holography: A New Approximation to QCD

    Get PDF
    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable zeta which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti--de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distributions of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M2=4κ2(n+L+S/2){\cal M}^2 = 4 \kappa^2(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable zeta. The space-like pion and nucleon form factors are also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.Comment: Invited talk, presented by SJB at the Fifth International Conference On Quarks and Nuclear Physics (QNP09), 21-26 Sep 2009, Beijing, China. Figure update

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    Renormalisation Flow and Universality for Ultracold Fermionic Atoms

    Full text link
    A functional renormalisation group study for the BEC-BCS crossover for ultracold gases of fermionic atoms is presented. We discuss the fixed point which is at the origin of universality for broad Feshbach resonances. All macroscopic quantities depend only on one relevant parameter, the concentration a k_F, besides their dependence on the temperature in units of the Fermi energy. In particular, we compute the universal ratio between molecular and atomic scattering length in vacuum. We also present an estimate to which level of accuracy universality holds for gases of Li and K atoms.Comment: 19 pages, 3 figures, to be published in PR

    Probing Intrinsic Charm with Semileptonic B Decays

    Get PDF
    We discuss semileptonic B decays of the form B -> J/Psi e nu X as possible probes of intrinsic charm. We calculate the leading order perturbative contribution to the process B- -> J/Psi e- nu_e X and find it to be unobservably small, with a branching ratio ~ 10^-10. We propose a modified spectator model to estimate the intrinsic charm contribution and find that it can be significantly larger, with a branching ratio for B -> (c cbar) e- nu_e X as large as 5 X 10^-7. We show that the process could be observed at these levels by CDF assuming a Run II integrated luminosity of 15 fb^-1, making this a useful reaction to probe the idea of intrinsic charm.Comment: 25 pages, LaTeX, 7 figures, uses epsf.sty. Version substantially revise

    Thermal Field Theory and Generalized Light Front Coordinates

    Full text link
    The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμνˉg_{\bar{\mu\nu}} is non-diagonal. The Kubo, Martin, Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount −i/(Tg00ˉ)-i\big/(T\sqrt{g_{\bar{00}}}). Light front quantization fails since g00ˉ=0g_{\bar{00}}=0, however various related quantizations are possible.Comment: 10 page

    Large corrections to asymptotic FηcγF_{\eta_c \gamma} and FηbγF_{\eta_b \gamma} in the light-cone perturbative QCD

    Full text link
    The large-Q2Q^2 behavior of ηc\eta_c-γ\gamma and ηb\eta_b-γ\gamma transition form factors, Fηcγ(Q2)F_{\eta_c\gamma}(Q^2) and Fηbγ(Q2)F_{\eta_b\gamma}(Q^2) are analyzed in the framework of light-cone perturbative QCD with the heavy quark (cc and bb) mass effect, the parton's transverse momentum dependence and the higher helicity components in the light-cone wave function are respected. It is pointed out that the quark mass effect brings significant modifications to the asymptotic predictions of the transition form factors in a rather broad energy region, and this modification is much severer for Fηbγ(Q2)F_{\eta_b\gamma}(Q^2) than that for Fηcγ(Q2)F_{\eta_c\gamma}(Q^2) due to the bb-quark being heavier than the cc-quark. The parton's transverse momentum and the higher helicity components are another two factors which decrease the perturbative predictions. For the transition form factor Fηcγ(Q2)F_{\eta_c\gamma}(Q^2), they bring sizable corrections in the present experimentally accessible energy region (Q2≤10GeV2Q^2 \leq 10 GeV^2). For the transition form factor Fηbγ(Q2)F_{\eta_b\gamma}(Q^2), the corrections coming from these two factors are negligible since the bb-quark mass is much larger than the parton's average transverse momentum. The coming e+e−e^+ e^- collider (LEP2) will provide the opportunity to examine these theoretical predictions.Comment: 8 pages, RevTex, 5 PostScript figure

    Muon Pair Production by Electron-Photon Scatterings

    Get PDF
    The cross section for muon pair productions by electrons scattering over photons, σMPP\sigma_{MPP}, is calculated analytically in the leading order. It is pointed out that for the center-of-mass energy range, s≥5mμ2s \geq 5 m^{2}_{\mu}, the cross section for σMPP\sigma_{MPP} is less than 1μ1 \mu b. The differential energy spectrum for either of the resulting muons is given for the purpose of high-energy neutrino astronomy. An implication of our result for a recent suggestion concerning the high-energy cosmic neutrino generation through this muon pair is discussed.Comment: a comment added, to appear in Phys. Rev. D, Rapid Communicatio

    Timelike form factors at high energy

    Full text link
    The difference between the timelike and spacelike meson form factors is analysed in the framework of perturbative QCD with Sudakov effects included. It is found that integrable singularities appear but that the asymptotic behavior is the same in the timelike and spacelike regions. The approach to asymptotia is quite slow and a rather constant enhancement of the timelike value is expected at measurable large Q2Q^{2}. This is in agreement with the trend shown by experimental data.Comment: 17 pages, report DAPNIA/SPhN 94 0

    Optimal Renormalization Scale and Scheme for Exclusive Processes

    Get PDF
    We use the BLM method to fix the renormalization scale of the QCD coupling in exclusive hadronic amplitudes such as the pion form factor and the photon-to-pion transition form factor at large momentum transfer. Renormalization-scheme-independent commensurate scale relations are established which connect the hard scattering subprocess amplitudes that control exclusive processes to other QCD observables such as the heavy quark potential and the electron-positron annihilation cross section. The commensurate scale relation connecting the heavy quark potential, as determined from lattice gauge theory, to the photon-to-pion transition form factor is in excellent agreement with γe→π0e\gamma e \to \pi^0 e data assuming that the pion distribution amplitude is close to its asymptotic form 3fπx(1−x)\sqrt{3}f_\pi x(1-x). We also reproduce the scaling and normalization of the γγ→π+π−\gamma \gamma \to \pi^+ \pi^- data at large momentum transfer. Because the renormalization scale is small, we argue that the effective coupling is nearly constant, thus accounting for the nominal scaling behavior of the data. However, the normalization of the space-like pion form factor Fπ(Q2)F_\pi(Q^2) obtained from electroproduction experiments is somewhat higher than that predicted by the corresponding commensurate scale relation. This discrepancy may be due to systematic errors introduced by the extrapolation of the γ∗p→π+n\gamma^* p \to \pi^+ n electroproduction data to the pion pole.Comment: 22 pages, Latex, 7 Latex figures. Several references added, discussion of scale fixing revised for clarity. Final version to appear in Phys. Rev.
    • …
    corecore