4,045 research outputs found
Novel Six-Quark Hidden-Color Dibaryon States in QCD
The recent observation of a hadronic resonance in the proton-neutron
system with isospin and spin-parity raises the possibility
of producing other novel six-quark dibaryon configurations allowed by QCD. A
dramatic example of an exotic six-quark color-singlet system is the charge
, isospin I=3, state which couples strongly to
+ The width and decay properties of such
six-quark resonances could be regarded as manifestations of "hidden-color"
six-quark configurations, a first-principle prediction of QCD -- SU(3)-color
gauge theory for the deuteron distribution amplitude. Other implications and
possible future experiments are discussed
AdS/QCD and Light Front Holography: A New Approximation to QCD
The combination of Anti-de Sitter space (AdS) methods with light-front
holography leads to a semi-classical first approximation to the spectrum and
wavefunctions of meson and baryon light-quark bound states. Starting from the
bound-state Hamiltonian equation of motion in QCD, we derive relativistic
light-front wave equations in terms of an invariant impact variable zeta which
measures the separation of the quark and gluonic constituents within the hadron
at equal light-front time. These equations of motion in physical space-time are
equivalent to the equations of motion which describe the propagation of spin-J
modes in anti--de Sitter (AdS) space. Its eigenvalues give the hadronic
spectrum, and its eigenmodes represent the probability distributions of the
hadronic constituents at a given scale. Applications to the light meson and
baryon spectra are presented. The predicted meson spectrum has a string-theory
Regge form ; i.e., the square of the
eigenmass is linear in both L and n, where n counts the number of nodes of the
wavefunction in the radial variable zeta. The space-like pion and nucleon form
factors are also well reproduced. One thus obtains a remarkable connection
between the description of hadronic modes in AdS space and the Hamiltonian
formulation of QCD in physical space-time quantized on the light-front at fixed
light-front time. The model can be systematically improved by using its
complete orthonormal solutions to diagonalize the full QCD light-front
Hamiltonian or by applying the Lippmann-Schwinger method in order to
systematically include the QCD interaction terms.Comment: Invited talk, presented by SJB at the Fifth International Conference
On Quarks and Nuclear Physics (QNP09), 21-26 Sep 2009, Beijing, China. Figure
update
String Approach to QCD Quarks in Fundamental Representations
Straightforward use of AdS/CFT correspondence can give QCD with quarks in
adjoint representations. Using an asymmetric orbifold approach we obtain
nonsupersymmetric QCD with four quark flavors in fundamental representations of
color.Comment: 8 pages, 1 figure. Talk at Eighth Workshop on Nonperturbative Quantum
Chromodynamics, l'Institut Astrophysique de Paris, June 7-11, 200
Light-Cone Quantization and Hadron Structure
In this talk, I review the use of the light-cone Fock expansion as a
tractable and consistent description of relativistic many-body systems and
bound states in quantum field theory and as a frame-independent representation
of the physics of the QCD parton model. Nonperturbative methods for computing
the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock
state representation of hadrons also describes quantum fluctuations containing
intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden
color". Fock state components of hadrons with small transverse size, such as
those which dominate hard exclusive reactions, have small color dipole moments
and thus diminished hadronic interactions; i.e., "color transparency". The use
of light-cone Fock methods to compute loop amplitudes is illustrated by the
example of the electron anomalous moment in QED. In other applications, such as
the computation of the axial, magnetic, and quadrupole moments of light nuclei,
the QCD relativistic Fock state description provides new insights which go well
beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to
[email protected]
Structure Functions are not Parton Probabilities
The common view that structure functions measured in deep inelastic lepton
scattering are determined by the probability of finding quarks and gluons in
the target is not correct in gauge theory. We show that gluon exchange between
the fast, outgoing partons and target spectators, which is usually assumed to
be an irrelevant gauge artifact, affects the leading twist structure functions
in a profound way. This observation removes the apparent contradiction between
the projectile (eikonal) and target (parton model) views of diffractive and
small x_{Bjorken} phenomena. The diffractive scattering of the fast outgoing
quarks on spectators in the target causes shadowing in the DIS cross section.
Thus the depletion of the nuclear structure functions is not intrinsic to the
wave function of the nucleus, but is a coherent effect arising from the
destructive interference of diffractive channels induced by final state
interactions. This is consistent with the Glauber-Gribov interpretation of
shadowing as a rescattering effect.Comment: 35 pages, 8 figures. Discussion of physical consequences of final
state interactions amplified. Material on light-cone gauge choices adde
Color Transparent GPDs?
The relation between GPD's and color transparency is explored. The discovery
of color transparency in pionic diffractive dissociation reactions allows us to
make specific predictions for the behavior of the pion generalized parton
distribution, and provide a further test of any model of the pion form factor.Comment: 12 pages, 3 figure
Optimal Renormalization Scale and Scheme for Exclusive Processes
We use the BLM method to fix the renormalization scale of the QCD coupling in
exclusive hadronic amplitudes such as the pion form factor and the
photon-to-pion transition form factor at large momentum transfer.
Renormalization-scheme-independent commensurate scale relations are established
which connect the hard scattering subprocess amplitudes that control exclusive
processes to other QCD observables such as the heavy quark potential and the
electron-positron annihilation cross section. The commensurate scale relation
connecting the heavy quark potential, as determined from lattice gauge theory,
to the photon-to-pion transition form factor is in excellent agreement with
data assuming that the pion distribution amplitude is
close to its asymptotic form . We also reproduce the
scaling and normalization of the data at large
momentum transfer. Because the renormalization scale is small, we argue that
the effective coupling is nearly constant, thus accounting for the nominal
scaling behavior of the data. However, the normalization of the space-like pion
form factor obtained from electroproduction experiments is
somewhat higher than that predicted by the corresponding commensurate scale
relation. This discrepancy may be due to systematic errors introduced by the
extrapolation of the electroproduction data to the
pion pole.Comment: 22 pages, Latex, 7 Latex figures. Several references added,
discussion of scale fixing revised for clarity. Final version to appear in
Phys. Rev.
Application of Pauli-Villars regularization and discretized light-cone quantization to a single-fermion truncation of Yukawa theory
We apply Pauli-Villars regularization and discretized light-cone quantization
to the nonperturbative solution of (3+1)-dimensional Yukawa theory in a
single-fermion truncation. Three heavy scalars, including two with negative
norm, are used to regulate the theory. The matrix eigenvalue problem is solved
for the lowest-mass state with use of a new, indefinite-metric Lanczos
algorithm. Various observables are extracted from the wave functions, including
average multiplicities and average momenta of constituents, structure
functions, and a form factor slope.Comment: 21 pages, 7 figures, RevTeX; published version: more extensive data
in the tables of v
Systematics of Heavy Quark Production at HERA
We discuss heavy quark and quarkonium production in various kinematic regions
at the HERA ep collider. In contrast to fixed target experiments, collider
kinematics allows the possibility of detailed measurements of particle
production in the proton fragmentation region. One thus can study parton
correlations in the proton Fock states materialized by the virtual photon
probe. We discuss various configurations of inelastic electron-proton
scattering, including peripheral, diffractive, and deep inelastic processes. In
particular, we show that intrinsic heavy quark Fock states can be identified by
the observation of quarkonium production at large and a low mean
transverse momentum which is insensitive to the virtuality of the photon.Comment: 17 pages, postscript. To obtain a copy of this paper send e-mail to
[email protected]
Gluon Virtuality and Heavy Sea Quark Contributions to the Spin-Dependent g_1 Structure Function
We analyze the quark mass dependence of photon gluon fusion in polarized deep
inelastic scattering for both the intrinsic and extrinsic gluon distributions
of the nucleon. We calculate the effective number of flavors for each of the
heavy and light quark photon gluon fusion contributions to the first moment of
the spin-dependent structure function .Comment: LaTex, 19 page
- âŠ