4,397 research outputs found

    Photon-meson transition form factors of light pseudoscalar mesons

    Full text link
    The photon-meson transition form factors of light pseudoscalar mesons π0\pi ^{0}, η\eta, and η′\eta ^{\prime} are systematically calculated in a light-cone framework, which is applicable as a light-cone quark model at low Q2Q^{2} and is also physically in accordance with the light-cone pQCD approach at large Q2Q^{2}. The calculated results agree with the available experimental data at high energy scale. We also predict the low Q2Q^{2} behaviors of the photon-meson transition form factors of π0\pi ^{0}, η\eta and η′\eta ^{\prime }, which are measurable in e+A(Nucleus)→e+A+Me+A({Nucleus})\to e+A+M process via Primakoff effect at JLab and DESY.Comment: 22 Latex pages, 7 figures, Version to appear in PR

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    Sum rules for light-by-light scattering

    Full text link
    We derive a set of sum rules for the light-by-light scattering and fusion: γγ→all\gamma\gamma \to all, and verify them in lowest order QED calculations. A prominent implication of these sum rules is the superconvergence of the helicity-difference total cross-section for photon fusion, which in the hadron sector reveals an intricate cancellation between the pseudoscalar and tensor mesons. An experimental verification of superconvergence of the polarized photon fusion into hadrons is called for, but will only be possible at e+e−e^+ e^- and γγ\gamma\gamma colliders with both beams polarized. We also show how the sum rules can be used to measure various contributions to the low-energy light-by-light scattering.Comment: 4 pages, 3 figures; minor corrections, published versio

    High-Energy QCD Asymptotics of Photon-Photon Collisions

    Get PDF
    The high-energy behaviour of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.Comment: Latex, 7 pages, 4 figure

    Subthreshold photoproduction of charm

    Get PDF
    Charm photoproduction rates off nuclei below the nucleon threshold are estimated using the phenomenologically known structure functions both for x>1 and x<1. The rates rapidly fall below the threshold from values of the order 10 pb for Pb close to the threshold (at 7.5 GeV) down to values of the order 1 pb at 6 GeV.Comment: 11 p[ages, 7 figure

    Nucleon-Quarkonium Elastic Scattering and the Gluon Contribution to Nucleon Spin

    Full text link
    It is shown that the amplitude for the scattering of a heavy quarkonium system from a nucleon near threshold is completely determined by the fraction of angular momentum, as well as linear momentum, carried by gluons in the nucleon. A form for the quarkonium-nucleon non-relativistic potential is derived.Comment: 4 pages, no figures. Author's e-mail: [email protected]
    • …
    corecore