43 research outputs found
Site factors determining epiphytic lichen distribution in a dieback-affected spruce-fir forest on Whiteface Mountain, New York: stemflow chemistry
Epiphytic lichen diversity in a dieback-affected forest of red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea (L.) Mill.) on Whiteface Mountain, New York, U.S.A., was higher on dead compared with living trees and on fir compared with spruce. Diversity differed more between living and dead spruce than between living and dead fir. Cover of all lichen species that occurred on more than 50% of the sample trees, except for two species, decreased with increasing mean concentration of NO3– in stemflow. Concentrations of NO3– were higher on living spruce compared with dead spruce and with living and dead fir. The negative correlations between lichen cover and NO3– concentration may reflect either a decrease of lichen abundance caused by toxic effects of higher NO3– concentrations or a removal of NO3– from stemflow by epiphytic lichens. Experimental exposure of Hypogymnia physodes to NaNO3 reduced chlorophyll concentrations. This result, together with estimations of lichen and needle biomass, indicates that a dependence of lichen cover on NO3– concentrations in stemflow may be the cause for the negative correlations. The sulphur concentration in stemflow did not affect lichen abundance on Whiteface Mountain. The manganese concentration in stemflow may have an effect on single species
Lichenometric dating (lichenometry) and the biology of the lichen genus rhizocarpon:challenges and future directions
Lichenometric dating (lichenometry) involves the use of lichen measurements to estimate the age of exposure of various substrata. Because of low radial growth rates and considerable longevity, species of the crustose lichen genus Rhizocarpon have been the most useful in lichenometry. The primary assumption of lichenometry is that colonization, growth and mortality of Rhizocarpon are similar on surfaces of known and unknown age so that the largest thalli present on the respective faces are of comparable age. This review describes the current state of knowledge regarding the biology of Rhizocarpon and considers two main questions: (1) to what extent does existing knowledge support this assumption; and (2) what further biological observations would be useful both to test its validity and to improve the accuracy of lichenometric dates? A review of the Rhizocarpon literature identified gaps in knowledge regarding early development, the growth rate/size curve, mortality, regeneration, competitive effects, colonization, and succession on rock surfaces. The data suggest that these processes may not be comparable on different rock surfaces, especially in regions where growth rates and thallus turnover are high. In addition, several variables could differ between rock surfaces and influence maximum thallus size, including rate and timing of colonization, radial growth rates, environmental differences, thallus fusion, allelopathy, thallus mortality, colonization and competition. Comparative measurements of these variables on surfaces of known and unknown age may help to determine whether the basic assumptions of lichenometry are valid. Ultimately, it may be possible to take these differences into account when interpreting estimated dates
