2 research outputs found

    Examining the impact of Ground Control point quantity on the geometric accuracy of UAV photogrammetric products formed using Structure-from-Motion approach

    Get PDF
    The positional and vertical accuracy of UAV aerial photogrammetry products generated using the Structure from Motion (SfM) approach depends on various factors, such as flight plan parameters, camera quality, camera calibration, the SfM algorithm used, and the georeferencing process. The influence of the quantity of Ground Control Points (GCPs) on the geometric quality of generated models and the stability of camera calibration parameters assessed through self-calibration in the block-aerotriangulation process was investigated in this study. Three software systems were used to process the collected UAV photogrammetry images: Pix4D Mapper, Agisoft Metashape, and Trimble Inpho UASMaster. Standard statistical quality assessments were employed to assess the accuracy of the block-aerotriangulation. The research findings indicate that augmenting the quantity of GCPs enhances model reliability and decreases the RMSE values of vertical deviation on the control points. The RMSE values of vertical deviation on the check points for all three used software systems converged to approximately twice the value of the average spatial resolution. Additionally, the RMSE values of positional deviation on check points converged to the value of the average spatial resolution

    Semantic segmentation of airborne laser scanning point clouds using machine learning methods

    No full text
    Π’Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° ласСрског ΡΠΊΠ΅Π½ΠΈΡ€Π°ΡšΠ° (Π΅Π½Π³Π». Light Detection and Ranging – LiDAR) ΠΏΠΎΠΊΠ°Π·Π°Π»Π° сС ΠΊΠ°ΠΎ Π²Π΅ΠΎΠΌΠ° ΡƒΡΠΏΠ΅ΡˆΠ½Π° Π·Π° Π±Ρ€Π·ΠΎ ΠΏΡ€ΠΈΠΊΡƒΠΏΡ™Π°ΡšΠ΅ масовнС ΠΊΠΎΠ»ΠΈΡ‡ΠΈΠ½Π΅ просторних ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° ΠΎ Ρ‚ΠΎΠΏΠΎΠ³Ρ€Π°Ρ„ΠΈΡ˜ΠΈ Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ²Ρ€ΡˆΠΈ Π—Π΅ΠΌΡ™Π΅. Π‘Π΅ΠΌΠ°Π½Ρ‚ΠΈΡ‡ΠΊΠ° ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π° ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡Π°ΠΊΠ° добијСног ласСрским ΡΠΊΠ΅Π½ΠΈΡ€Π°ΡšΠ΅ΠΌ ΠΈΠ· Π²Π°Π·Π΄ΡƒΡ…Π° (Π΅Π½Π³Π». Airborne Laser Scanning – ALS) која сС Ρ‚Π°ΠΊΠΎΡ’Π΅ Π½Π°Π·ΠΈΠ²Π° ΠΈ ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡aΠΊΠ°, сСмантичко ΠΎΠ·Π½Π°Ρ‡Π°Π²Π°ΡšΠ΅ ΠΊΠ°ΠΎ ΠΈ сСмантичка ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡Π°ΠΊΠ°, прСдставља Π²Π΅Π»ΠΈΠΊΠΈ ΠΈΠ·Π°Π·ΠΎΠ² Π·Π±ΠΎΠ³ структурС ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡Π°ΠΊΠ° ΠΈ Ρ‚ΠΈΠΏΠΎΠ²Π° класа којС сС ΠΌΠΎΠ³Ρƒ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Ρ‚ΠΈ Ρƒ Ρ‚ΠΎΠΌ простору. Машинско ΡƒΡ‡Π΅ΡšΠ΅, са Π΄Ρ€ΡƒΠ³Π΅ странС, прСдставља ΠΌΠΎΡ›Π°Π½ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ Π°ΠΏΠ°Ρ€Π°Ρ‚ који сС ΠΌΠΎΠΆΠ΅ искористити Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜ΡƒΡ›ΠΈ ΠΈ Π½Π°Π²Π΅Π΄Π΅Π½Ρƒ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρƒ. Π£ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ су Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ машинског ΡƒΡ‡Π΅ΡšΠ° којим сС Π΄ΠΎΠ±ΠΈΡ˜Π°Ρ˜Ρƒ Π½Π°Ρ˜Π±ΠΎΡ™ΠΈ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ сСмантичкС ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡Π°ΠΊΠ°, ΠΏΠΎΠ³ΠΎΡ‚oΠ²ΠΎ са слоТСним ансамбл ΠΌΠΎΠ΄Π΅Π»ΠΈΠΌΠ° машинског ΡƒΡ‡Π΅ΡšΠ° конструисаним слагањСм вишС основних ΠΌΠΎΠ΄Π΅Π»Π° машинског ΡƒΡ‡Π΅ΡšΠ°. Π£ ΠΎΠ²ΠΎΠΌ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΡƒ јС Π²Ρ€ΡˆΠ΅Π½ΠΎ ΠΈ Π±Π°Π»Π°Π½ΡΠΈΡ€Π°ΡšΠ΅ скупа ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° синтСтичким Π³Π΅Π½Π΅Ρ€ΠΈΡΠ°ΡšΠ΅ΠΌ Ρ‚Π°Ρ‡Π°ΠΊΠ° којС ΠΏΡ€ΠΈΠΏΠ°Π΄Π°Ρ˜Ρƒ мањинским класама Π΄ΠΎΠΊ су Ρ‚Π°Ρ‡ΠΊΠ΅ којС ΠΏΡ€ΠΈΠΏΠ°Π΄Π°Ρ˜Ρƒ вСћинским класама Π·Π½Π°Ρ‚Π½ΠΎ Ρ€Π΅Π΄ΡƒΠΊΠΎΠ²Π°Π½Π΅. Π’Ρ€ΡˆΠ΅Π½e су Π°Π½Π°Π»ΠΈΠ·Π° Ρ‚ΠΈΠΏΠ° ΠΏΡ€Π΅Ρ‚Ρ€Π°Π³Π΅ Ρ‚Π°Ρ‡Π°ΠΊΠ° сусСдства ΠΈ Π°Π½Π°Π»ΠΈΠ·Π° ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΏΠΎΠ»ΡƒΠΏΡ€Π΅Ρ‡Π½ΠΈΠΊΠ° ΠΏΡ€Π΅Ρ‚Ρ€Π°Π³Π΅, Π° испитана јС ΠΈ могућност Π²ΠΈΡˆΠ΅Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ (Π΅Π½Π³Π». multiscale) приступа ΠΏΡ€Π΅Ρ‚Ρ€Π°Π³Π΅ Ρƒ Ρ†ΠΈΡ™Ρƒ Π³Π΅Π½Π΅Ρ€ΠΈΡΠ°ΡšΠ° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΡΠΊΠΈΡ… Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚Π° (карактСристика) Ρ‚Π°Ρ‡Π°ΠΊΠ°. ΠžΠ΄Ρ€Π΅Ρ’Π΅Π½ јС Π²Π΅Π»ΠΈΠΊΠΈ Π±Ρ€ΠΎΡ˜ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚Π° Ρ‚Π°Ρ‡Π°ΠΊΠ° ΠΈ ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° ΡΠ΅Π»Π΅ΠΊΡ†ΠΈΡ˜Π° ΠΎΠ½ΠΈΡ… Π½Π°Ρ˜Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈΡ˜ΠΈΡ… Π·Π° сСмантичку ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Ρƒ ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡Π°ΠΊΠ°. Π˜Π·Π²ΠΎΡ’Π΅Π½Π° јС сСмантичка ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π° ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡Π°ΠΊΠ° ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ дСсСт Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π° машинског ΡƒΡ‡Π΅ΡšΠ°. Највиша ΡƒΠΊΡƒΠΏΠ½Π° тачност (Π΅Π½Π³Π». Overall Accuracy – OA) сСмантичкС ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡Π°ΠΊΠ° добијСног ласСрским ΡΠΊΠ΅Π½ΠΈΡ€Π°ΡšΠ΅ΠΌ ΠΈΠ· Π²Π°Π·Π΄ΡƒΡ…Π° Π±ΠΈΠ»Π° јС 83.5% Π·Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠΏΠΎΡ‚ΠΏΠΎΡ€Π½ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Π΅Π½Π³Π». Support Vector Machine) ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Ρƒ Π½Π° ISPRS тСст ΠΏΠΎΠ΄Π°Ρ‚ΠΊΠ΅, Π΄ΠΎΠΊ јС Π½Π°Π΄ GRSS тСст ΠΏΠΎΠ΄Π°Ρ†ΠΈΠΌΠ° ласСрског ΡΠΊΠ΅Π½ΠΈΡ€Π°ΡšΠ° постигнута ΡƒΠΊΡƒΠΏΠ½Π° тачност ΠΎΠ΄ 93.6% ΠΊΠ°Π΄Π° сС користи слоТСни ансамбл ΠΌΠΎΠ΄Π΅Π» Π±Π°Π·ΠΈΡ€Π°Π½ Π½Π° Π½Π°ΠΈΠ²Π½ΠΎΠΌ Π‘Π°Ρ˜Π΅ΡΡƒ (Π΅Π½Π³Π». Naive Bayes) ΠΈ ΡΠ»Π°Π³Π°ΡšΡƒ ΠΌΠΎΠ΄Π΅Π»Π°: ΡΠ»ΡƒΡ‡Π°Ρ˜Π½Π΅ ΡˆΡƒΠΌΠ΅ (Π΅Π½Π³Π». Random Forest), Π³Ρ€Π°Π΄ΠΈΡ˜Π΅Π½Ρ‚Π½ΠΎΠ³ ΠΏΠΎΡ˜Π°Ρ‡Π°Π²Π°ΡšΠ° (Π΅Π½Π³Π». Gradient Boosting) ΠΈ логистичкС Ρ€Π΅Π³Ρ€Π΅ΡΠΈΡ˜Π΅ (Π΅Π½Π³Π». Logistic Regression). Π£ Π½Π΅ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π°ΠΌΠ°, ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π° ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡Π°ΠΊΠ° добијСног ласСрским ΡΠΊΠ΅Π½ΠΈΡ€Π°ΡšΠ΅ΠΌ ΠΈΠ· Π²Π°Π·Π΄ΡƒΡ…Π° ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π° ΠΈ издвајањС ΠΎΠ±Ρ˜Π΅ΠΊΠ°Ρ‚Π° ΠΎΠ΄ интСрСса (ΠΊΡ€ΠΎΠ²Π° Π·Π³Ρ€Π°Π΄Π΅, ΠΊΡ€ΠΎΡˆΡšΠ΅ Π΄Ρ€Π²Π΅Ρ‚Π° ΠΈ слично). Π£ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΎΠ²ΠΎΠ³ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΎΠ±Ρ€Π°Ρ’Π΅Π½Π° јС ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π° ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚Π°Ρ‡Π°ΠΊΠ° ΠΏΠΎΡˆΡƒΠΌΡ™Π΅Π½ΠΎΠ³ ΠΏΠΎΠ΄Ρ€ΡƒΡ‡Ρ˜Π° добијСног ласСрским ΡΠΊΠ΅Π½ΠΈΡ€Π°ΡšΠ΅ΠΌ са Ρ†ΠΈΡ™Π΅ΠΌ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜Π΅ ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½ΠΈΡ… стабала. НавСдСни приступ ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π° Ρ„ΠΈΠ»Ρ‚Ρ€ΠΈΡ€Π°ΡšΠ΅ Π»ΠΎΠΊΠ°Π»Π½ΠΈΡ… максимума ΠΈ ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Ρƒ ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½ΠΈΡ… ΠΊΡ€ΠΎΡˆΡšΠΈ стабала Π½Π° основу висинског ΠΌΠΎΠ΄Π΅Π»Π° ΠΊΡ€ΠΎΡˆΡšΠΈ стабала. ΠŸΡ€Π΅Ρ‚Ρ…ΠΎΠ΄Π½ΠΈ поступак јС Π±ΠΈΡ‚Π°Π½ Π·Π° Π³Π΅Π½Π΅Ρ€ΠΈΡΠ°ΡšΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ²Π° Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚Π° Π½Π° Π½ΠΈΠ²ΠΎΡƒ сСгмСната ΠΊΡ€ΠΎΡˆΡšΠΈ стабала којС сС користС Π·Π° ΠΊΠ°ΡΠ½ΠΈΡ˜Ρƒ ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π° Π²Ρ€Ρ…ΠΎΠ²Π° стабала Ρƒ исправно ΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΠ²Π°Π½Π΅. Π˜ΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅ јС спровСдСно Π·Π° ΠΏΠΎΠ΄Ρ€ΡƒΡ‡Ρ˜Π΅ ΠΌΠ΅ΡˆΠΎΠ²ΠΈΡ‚Π΅ ΡˆΡƒΠΌΠ΅, ΠΏΡ€Π΅Ρ‚Π΅ΠΆΠ½ΠΎ Π»ΠΈΡˆΡ›Π°Ρ€ΡΠΊΠ΅, VIII слоТСнС Ρ‚ΠΎΠΏΠΎΠ³Ρ€Π°Ρ„ΠΈΡ˜Π΅ ΠΈ димСнзија 0.6 km Γ— 4 km. Π˜ΡΠΏΠΈΡ‚ΠΈΠ²Π°Π½Π΅ су пСрформансС ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ Π·Π° ΠΏΠ΅Ρ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° машинског ΡƒΡ‡Π΅ΡšΠ°: ΡΠ»ΡƒΡ‡Π°Ρ˜Π½e ΡˆΡƒΠΌe, СкстрСмно Π³Ρ€Π°Π΄ΠΈΡ˜Π΅Π½Ρ‚Π½ΠΎ ΠΏΠΎΡ˜Π°Ρ‡Π°Π²Π°ΡšΠ΅ (Π΅Π½Π³Π». Extreme Gradient Boosting), Π²Π΅ΡˆΡ‚Π°Ρ‡ΠΊΠ΅ нСуронскС ΠΌΡ€Π΅ΠΆΠ΅ (Π΅Π½Π³Π». Artificial Neural Network), ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΠΏΠΎΡ‚ΠΏΠΎΡ€Π½ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ логистичкС Ρ€Π΅Π³Ρ€Π΅ΡΠΈΡ˜Π΅. ОвдС јС Ρ‚Π°ΠΊΠΎΡ’Π΅ Π²Ρ€ΡˆΠ΅Π½ΠΎ Π±Π°Π»Π°Π½ΡΠΈΡ€Π°ΡšΠ΅ класа скупа ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° Ρƒ Ρ†ΠΈΡ™Ρƒ ΠΏΠΎΡΡ‚ΠΈΠ·Π°ΡšΠ° Π±ΠΎΡ™ΠΈΡ… пСрформанси Ρƒ Π²ΠΈΠ΄Ρƒ тачности ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅. ΠšΠΎΠ½Π°Ρ‡Π½Π° ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° јС ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° са ΠΌΠΎΠ΄Π΅Π»ΠΎΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Π½Π΅ ΡˆΡƒΠΌΠ΅ са којим сС Π΄ΠΎΠ±ΠΈΡ˜Π°Ρ˜Ρƒ Π½Π°Ρ˜Π±ΠΎΡ™Π΅ пСрформансС Ρƒ ΠΏΠΎΠ³Π»Π΅Π΄Ρƒ тачности ΠΊΠ»Π°ΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅. Π£ΠΊΡƒΠΏΠ½Π° тачност (OA) ΠΈ ΠΊΠ°ΠΏΠ° ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚ слагања (ΞΊ) добијСни дСсСтоструком унакрсном Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡ˜ΠΎΠΌ Π½Π°Π΄ Ρ‚Ρ€Π΅Π½ΠΈΠ½Π³ ΠΏΠΎΠ΄Π°Ρ†ΠΈΠΌΠ° износили су 90.4% ΠΈ 0.808. ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ истрСнираног ΠΌΠΎΠ΄Π΅Π»Π° Π½Π° нСзависном скупу ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° добијСно јС Π΄Π° јС OA = 89.0% ΠΈ ΞΊ = 0.757. На ΠΊΡ€Π°Ρ˜Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ Π΄Π°Ρ‚Π΅ су смСрницС Π·Π° Π΄Π°Ρ™Π΅ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅ ΠΈ Ρ€Π°Π·Π²ΠΎΡ˜.Light Detection and Ranging – LiDAR technology has proven to be very successful for rapid collection of massive amounts of spatial data on the topography of the Earth's physical surface. Semantic segmentation of an Airborne Laser Scanning (ALS) point cloud, also called point cloud classification or semantic labeling as well as semantic point cloud classification is a major challenge due to the structure of the point cloud, as well as the types of classes that can be identified in that space. Machine learning (ML), on the other hand, represents a powerful mathematical tool that can be used for a variety of applications, including mentioned procedure. In this dissertation, ML methods are analyzed in the terms of achieving the best results for semantic segmentation of point cloud, especially with stacked ensemble ML models constructed by combining several fundamental ML methods. The ALS dataset was also balanced in such a way that points belonging to minority classes are synthetically generated while points belonging to the major classes are highly reduced. An analysis of the search type of neighborhood points and the sizes of the search radius were performed, and the possibility of using a multi–scale search approach in order to generate the geometric characteristics of the points. A large number of different features (attributes) of the points was determined and the selection of the features that are most significant for the semantic segmentation of the point cloud was carried out. Semantic segmentation of ALS point clouds was performed by using ten different ML methods. The highest overall accuracy of the semantic segmentation of the ALS point cloud was 83.5% for the support vector machine method predicted on the ISPRS test data, while the overall accuracy of 93.6% was achieved on the GRSS test ALS data when using the stacked ensemble model of naive Bayesian stacking of several ML models (Random Forest, Gradient Boosting and Logistic Regression). In some applications, segmentation also implies extraction of the objects of interest (the building roof, the tree crown, etc.). Within this research, the segmentation of the ALS point cloud of a forested area was analyzed with the aim of Individual Tree Detection (ITD). The mentioned approach involves Local Maxima (LM) filtering and segmentation of individual tree canopies by using the Canopy Height Model (CHM). Previous procedure is important for generation of different segment–level type of features that are used for later classification of treetops into correctly and incorrectly detected ones. The study was conducted for a mixed temperate forest, predominantly deciduous, with complex topography and area size of 0.6 km Γ— 4 km. Classification model training was performed by five machine learning approaches: Random Forest (RF), Extreme Gradient Boosting (XGB), Artificial Neural Network (ANN), Support Vector Machine (SVM) and Logistic Regression (LR). Here, the classes of the dataset were also balanced in order to achieve better performance in the terms of classification accuracy. The final classification was performed with the random forest model, which gives the best performance in terms of classification accuracy. The Overall Accuracy (OA) and the kappa coefficient of agreement (ΞΊ) obtained from ten–fold cross validation for the training data were 90.4% X and 0.808, respectively. The application of the trained model on the independent set of data, resulted in OA = 89.0% and ΞΊ = 0.757. At the end of the dissertation, guidelines for further research and development are given
    corecore