35 research outputs found

    Gut-associated microbes of Drosophila melanogaster

    Get PDF
    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1-30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact.   "Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment." -James Sang, 1959 Ann NY Acad ( 1)

    Gut homeostasis in a microbial world: insights from Drosophila melanogaster

    Get PDF
    Intestinal homeostasis is achieved, in part, by the integration of a complex set of mechanisms that eliminate pathogens and tolerate the indigenous microbiota. Drosophila melanogaster feeds on microorganism-enriched matter and therefore has developed efficient mechanisms to control ingested microorganisms. Regulatory mechanisms ensure an appropriate level of immune reactivity in the gut to accommodate the presence of beneficial and dietary microorganisms, while allowing effective immune responses to clear pathogens. Maintenance of D. melanogaster gut homeostasis also involves regeneration of the intestine to repair damage associated with infection. Entomopathogenic bacteria have developed common strategies to subvert these defence mechanisms and kill their host

    Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology

    Get PDF
    To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up-and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. IMPORTANCE The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the mechanisms underlying the establishment and function of these associations. Here, we used the fruit fly to understand how the microbiota affects host function. Importantly, we found that the microbiota has far-reaching effects on host physiology, ranging from immunity to gut structure. Our results validate the notion that important insights on complex host-microbe relationships can be obtained from the use of a well-established and genetically tractable invertebrate model

    Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera

    Get PDF
    Abstract Background Gut microbiota contribute to the health of their hosts, and alterations in the composition of this microbiota can lead to disease. Previously, we demonstrated that indigenous gut bacteria were required for the insecticidal toxin of Bacillus thuringiensis to kill the gypsy moth, Lymantria dispar. B. thuringiensis and its associated insecticidal toxins are commonly used for the control of lepidopteran pests. A variety of factors associated with the insect host, B. thuringiensis strain, and environment affect the wide range of susceptibilities among Lepidoptera, but the interaction of gut bacteria with these factors is not understood. To assess the contribution of gut bacteria to B. thuringiensis susceptibility across a range of Lepidoptera we examined larval mortality of six species in the presence and absence of their indigenous gut bacteria. We then assessed the effect of feeding an enteric bacterium isolated from L. dispar on larval mortality following ingestion of B. thuringiensis toxin. Results Oral administration of antibiotics reduced larval mortality due to B. thuringiensis in five of six species tested. These included Vanessa cardui (L.), Manduca sexta (L.), Pieris rapae (L.) and Heliothis virescens (F.) treated with a formulation composed of B. thuringiensis cells and toxins (DiPel), and Lymantria dispar (L.) treated with a cell-free formulation of B. thuringiensis toxin (MVPII). Antibiotics eliminated populations of gut bacteria below detectable levels in each of the insects, with the exception of H. virescens, which did not have detectable gut bacteria prior to treatment. Oral administration of the Gram-negative Enterobacter sp. NAB3, an indigenous gut resident of L. dispar, restored larval mortality in all four of the species in which antibiotics both reduced susceptibility to B. thuringiensis and eliminated gut bacteria, but not in H. virescens. In contrast, ingestion of B. thuringiensis toxin (MVPII) following antibiotic treatment significantly increased mortality of Pectinophora gossypiella (Saunders), which was also the only species with detectable gut bacteria that lacked a Gram-negative component. Further, mortality of P. gossypiella larvae reared on diet amended with B. thuringiensis toxin and Enterobacter sp. NAB3 was generally faster than with B. thuringiensis toxin alone. Conclusion This study demonstrates that in some larval species, indigenous gut bacteria contribute to B. thuringiensis susceptibility. Moreover, the contribution of enteric bacteria to host mortality suggests that perturbations caused by toxin feeding induce otherwise benign gut bacteria to exert pathogenic effects. The interaction between B. thuringiensis and the gut microbiota of Lepidoptera may provide a useful model with which to identify the factors involved in such transitions.http://deepblue.lib.umich.edu/bitstream/2027.42/112871/1/12915_2008_Article_219.pd

    Evaluation of INSeq To Identify Genes Essential for

    Get PDF
    The reciprocal interaction between rhizosphere bacteria and their plant hosts results in a complex battery of genetic and physiological responses. In this study, we used insertion sequencing (INSeq) to reveal the genetic determinants responsible for the fitness of Pseudomonas aeruginosa PGPR2 during root colonization. We generated a random transposon mutant library of Pseudomonas aeruginosa PGPR2 comprising 39,500 unique insertions and identified genes required for growth in culture and on corn roots. A total of 108 genes were identified as contributing to the fitness of strain PGPR2 on roots. The importance in root colonization of four genes identified in the INSeq screen was verified by constructing deletion mutants in the genes and testing them for the ability to colonize corn roots singly or in competition with the wild type. All four mutants were affected in corn root colonization, displaying 5- to 100-fold reductions in populations in single inoculations, and all were outcompeted by the wild type by almost 100-fold after seven days on corn roots in mixed inoculations of the wild type and mutant. The genes identified in the screen had homology to genes involved in amino acid catabolism, stress adaptation, detoxification, signal transduction, and transport. INSeq technology proved a successful tool to identify fitness factors in P aeruginosa PGPR2 for root colonization

    Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gut homeostasis is central to whole organism health, and its disruption is associated with a broad range of pathologies. Following damage, complex physiological events are required in the gut to maintain proper homeostasis. Previously, we demonstrated that ingestion of a nonlethal pathogen, <it>Erwinia carotovora carotovora 15</it>, induces a massive increase in stem cell proliferation in the gut of <it>Drosophila</it>. However, the precise cellular events that occur following infection have not been quantitatively described, nor do we understand the interaction between multiple pathways that have been implicated in epithelium renewal.</p> <p>Results</p> <p>To understand the process of infection and epithelium renewal in more detail, we performed a quantitative analysis of several cellular and morphological characteristics of the gut. We observed that the gut of adult <it>Drosophila </it>undergoes a dynamic remodeling in response to bacterial infection. This remodeling coordinates the synthesis of new enterocytes, their proper morphogenesis and the elimination of damaged cells through delamination and anoikis. We demonstrate that one signaling pathway, the epidermal growth factor receptor (EGFR) pathway, is key to controlling each of these steps through distinct functions in intestinal stem cells and enterocytes. The EGFR pathway is activated by the EGF ligands, Spitz, Keren and Vein, the latter being induced in the surrounding visceral muscles in part under the control of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Additionally, the EGFR pathway synergizes with the JAK/STAT pathway in stem cells to promote their proliferation. Finally, we show that the EGFR pathway contributes to gut morphogenesis through its activity in enterocytes and is required to properly coordinate the delamination and anoikis of damaged cells. This function of the EGFR pathway in enterocytes is key to maintaining homeostasis, as flies lacking EGFR are highly susceptible to infection.</p> <p>Conclusions</p> <p>This study demonstrates that restoration of normal gut morphology following bacterial infection is a more complex phenomenon than previously described. Maintenance of gut homeostasis requires the coordination of stem cell proliferation and differentiation, with the incorporation and morphogenesis of new cells and the expulsion of damaged enterocytes. We show that one signaling pathway, the EGFR pathway, is central to all these stages, and its activation at multiple steps could synchronize the complex cellular events leading to gut repair and homeostasis.</p

    A common origin for immunity and digestion

    Get PDF
    Historically the digestive and immune systems were viewed and studied as separate entities. However, there are remarkable similarities and shared functions in both nutrient acquisition and host defense. Here, I propose a common origin for both systems. This association provides a new prism for viewing the emergence and evolution of host defense mechanisms

    Recognition and response to microbial infection in Drosophila

    No full text
    This chapter discusses the mechanisms whereby Drosophila recognize foreign microbes, the signalling systems that regulate adapted responses against them, and the effector mechanisms used to control them. It first focuses on the so-called systemic antimicrobial response. The second section of the chapter looks at local immune response, particularly gut epithelial immunity. The final section of the chapter discusses current research themes exploring the integration of local and systemic immunity, as well as their integration in host physiolog

    Meta-analysis of Diets Used in Drosophila Microbiome Research and Introduction of the Drosophila Dietary Composition Calculator (DDCC)

    No full text
    Nutrition is a major factor influencing many aspects of Drosophila melanogaster physiology. However, a wide range of diets, many of which are termed “standard” in the literature, are utilized for D. melanogaster research, leading to inconsistencies in reporting of nutrition-dependent phenotypes across the field. This is especially evident in microbiome studies, as diet has a pivotal role in microbiome composition and resulting host-microbe interactions. Here, we performed a meta-analysis of diets used in fly microbiome research and provide a web-based tool for researchers to determine the nutritional content of diets of interest. While our meta-analysis primarily focuses on microbiome studies, our goal in developing these resources is to aid the broader community in contextualizing past and future studies across the scope of D. melanogaster research to better understand how individual lab diets can contribute to observed phenotypes
    corecore