943 research outputs found

    On the cause of the flat-spot phenomenon observed in silicon solar cells at low temperatures and low intensities

    Get PDF
    A model is presented that explains the "flat-spot" (FS) power loss phenomenon observed in silicon solar cells operating deep space (low temperature, low intensity) conditions. Evidence is presented suggesting that the effect is due to localized metallurgical interactions between the silicon substrate and the contact metallization. These reactions are shown to result in localized regions in which the PN junction is destroyed and replaced with a metal-semiconductor-like interface. The effects of thermal treatment, crystallographic orientation, junction depth, and metallurization are presented along with a method of preventing the effect through the suppression of vacancy formation at the free surface of the contact metallization. Preliminary data indicating the effectiveness of a TiN diffusion barrier in preventing the effect are also given

    Effects of impurities on radiation damage of silicon solar cells

    Get PDF
    Impurities effects on radiation damage of silicon solar cell

    Power Law of Customers' Expenditures in Convenience Stores

    Full text link
    In a convenience store chain, a tail of the cumulative density function of the expenditure of a person during a single shopping trip follows a power law with an exponent of -2.5. The exponent is independent of the location of the store, the shopper's age, the day of week, and the time of day.Comment: 9 pages, 5 figures. Accepted for publication in Journal of the Physical Society of Japan Vol.77No.

    Percolation in Directed Scale-Free Networks

    Full text link
    Many complex networks in nature have directed links, a property that affects the network's navigability and large-scale topology. Here we study the percolation properties of such directed scale-free networks with correlated in- and out-degree distributions. We derive a phase diagram that indicates the existence of three regimes, determined by the values of the degree exponents. In the first regime we regain the known directed percolation mean field exponents. In contrast, the second and third regimes are characterized by anomalous exponents, which we calculate analytically. In the third regime the network is resilient to random dilution, i.e., the percolation threshold is p_c->1.Comment: Latex, 5 pages, 2 fig

    Universal Behavior of Load Distribution in Scale-free Networks

    Full text link
    We study a problem of data packet transport in scale-free networks whose degree distribution follows a power-law with the exponent γ\gamma. We define load at each vertex as the accumulated total number of data packets passing through that vertex when every pair of vertices send and receive a data packet along the shortest path connecting the pair. It is found that the load distribution follows a power-law with the exponent δ2.2(1)\delta \approx 2.2(1), insensitive to different values of γ\gamma in the range, 2<γ32 < \gamma \le 3, and different mean degrees, which is valid for both undirected and directed cases. Thus, we conjecture that the load exponent is a universal quantity to characterize scale-free networks.Comment: 5 pages, 5 figures, revised versio

    Random graphs with arbitrary degree distributions and their applications

    Full text link
    Recent work on the structure of social networks and the internet has focussed attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed and bipartite graphs. Among other results, we derive exact expressions for the position of the phase transition at which a giant component first forms, the mean component size, the size of the giant component if there is one, the mean number of vertices a certain distance away from a randomly chosen vertex, and the average vertex-vertex distance within a graph. We apply our theory to some real-world graphs, including the world-wide web and collaboration graphs of scientists and Fortune 1000 company directors. We demonstrate that in some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the behavior of the real world, while in others there is a measurable discrepancy between theory and reality, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.Comment: 19 pages, 11 figures, some new material added in this version along with minor updates and correction

    Minimizing energy below the glass thresholds

    Full text link
    Focusing on the optimization version of the random K-satisfiability problem, the MAX-K-SAT problem, we study the performance of the finite energy version of the Survey Propagation (SP) algorithm. We show that a simple (linear time) backtrack decimation strategy is sufficient to reach configurations well below the lower bound for the dynamic threshold energy and very close to the analytic prediction for the optimal ground states. A comparative numerical study on one of the most efficient local search procedures is also given.Comment: 12 pages, submitted to Phys. Rev. E, accepted for publicatio

    Finding and evaluating community structure in networks

    Full text link
    We propose and study a set of algorithms for discovering community structure in networks -- natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using one of a number of possible "betweenness" measures, and second, these measures are, crucially, recalculated after each removal. We also propose a measure for the strength of the community structure found by our algorithms, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering community structure in both computer-generated and real-world network data, and show how they can be used to shed light on the sometimes dauntingly complex structure of networked systems.Comment: 16 pages, 13 figure

    Cascade-based attacks on complex networks

    Full text link
    We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.Comment: 4 pages, 4 figures, Revte

    Large-scale structure of a nation-wide production network

    Full text link
    Production in an economy is a set of firms' activities as suppliers and customers; a firm buys goods from other firms, puts value added and sells products to others in a giant network of production. Empirical study is lacking despite the fact that the structure of the production network is important to understand and make models for many aspects of dynamics in economy. We study a nation-wide production network comprising a million firms and millions of supplier-customer links by using recent statistical methods developed in physics. We show in the empirical analysis scale-free degree distribution, disassortativity, correlation of degree to firm-size, and community structure having sectoral and regional modules. Since suppliers usually provide credit to their customers, who supply it to theirs in turn, each link is actually a creditor-debtor relationship. We also study chains of failures or bankruptcies that take place along those links in the network, and corresponding avalanche-size distribution.Comment: 17 pages with 8 figures; revised section VI and references adde
    corecore