22 research outputs found

    Inelastic and transfer reactions in 92Mo+255 MeV 60Ni collisions studied by γγ coincidences

    Get PDF
    For the 92Mo+255 MeV60Ni system, inelastic and few-nucleon transfer events populating non-collective states of moderately high spin have been studied by γγ coincidence measurements. Besides the strong inelastic scattering channel, twelve transfer processes were identified, ranging from 1 n to 2α transfer; typically, cross coincidences between the γ-rays from both products were observed. Potential spectroscopic applications are indicated

    On Complex Formation between 5-Fluorouracil and β-Cyclodextrin in Solution and in the Solid State: IR Markers and Detection of Short-Lived Complexes by Diffusion NMR

    No full text
    In this work, the nuclear magnetic resonance (NMR) and IR spectroscopic markers of the complexation between 5-fluorouracil (5-FU) and β-cyclodextrin (β-CD) in solid state and in aqueous solution are investigated. In the attenuated total reflectance(ATR) spectra of 5-FU/β-CD products obtained by physical mixing, kneading and co-precipitation, we have identified the two most promising marker bands that could be used to detect complex formations: the C=O and C-F stretching bands of 5-FU that experience a blue shift by ca. 8 and 2 cm-1 upon complexation. The aqueous solutions were studied by NMR spectroscopy. As routine NMR spectra did not show any signs of complexation, we have analyzed the diffusion attenuation of spin-echo signals and the dependence of the population factor of slowly diffusing components on the diffusion time (diffusion NMR of pulsed-field gradient (PFG) NMR). The analysis has revealed that, at each moment, ~60% of 5-FU molecules form a complex with β-CD and its lifetime is ca. 13.5 ms. It is likely to be an inclusion complex, judging from the independence of the diffusion coefficient of β-CD on complexation. The obtained results could be important for future attempts of finding better methods of targeted anticancer drug delivery

    Anaerobic ammonium oxidation in a bioreactor treating slaughterhouse wastewater

    No full text
    Ammonium oxidation was thought to be an exclusively aerobic process; however, as recently described in the literature, it is also possible under anaerobic conditions and this process was named ANAMMOX. This work describes the operation of a system consisting of a denitrifying reactor coupled to a nitrifying reactor used for removal of nitrogen from slaughterhouse wastewater. During operation of the denitrifying reactor an average nitrogen ammonium removal rate of 50 mg/Ld was observed. This biomass was used to seed a second reactor, operated in repeated fed batch mode, fed with synthetic medium specific to the growth of bacteria responsible for the ANAMMOX process. The nitrogen loading rate varied between 33 and 67 mgN/Ld and average nitrogen removal was 95% and 40%, respectively. Results of fluorescence in situ hybridization (FISH) confirmed the presence of anammox-like microorganisms in the enriched biomass
    corecore