117 research outputs found

    Molecular fossils in Archean rocks

    Get PDF

    Synthesis of 26-methyl cholestane and identification of cryostanes in mid- Neoproterozoic sediments

    Get PDF
    International audienceThe biomarker distributions of mid-Neoproterozoic sediments (800–717 million yr, Ma) from various locations are characterized by the occurrence, besides cholestane isomers, of a novel series of C28 steranes, whereas classical C-24 alkylated steranes are absent. These unusual C28 steranes, termed cryostanes, seem to be restricted to pre-Snowball Earth sediments. We report their conclusive identification as 26-methyl cholestanes based on comparison of gas chromatographic (GC) behavior and mass spectrum of the last eluting cryostane isomer with those of a 26-methyl 5α(H),14α(H),17α(H),20R-cholestane standard obtained by way of synthesis. Sterols methylated at C-26 seem to be restricted to some demosponges and, based on molecular clock estimates, demosponges may have emerged in the time interval 800–700 Ma. A sponge origin of cryostanes is thereby conceivable, making cryostanes the oldest molecular markers for animals. However, other biological sources need to be explored, including the wide variety of eukaryotic protists

    Paleoecology of Neoproterozoic hypersaline environments: Biomarker evidence for haloarchaea, methanogens, and cyanobacteria

    Get PDF
    While numerous studies have examined modern hypersaline ecosystems, their equivalents in the geologic past, particularly in the Precambrian, are poorly understood. In this study, biomarkers from ~820 million year (Ma)-old evaporites from the Gillen Formation of the mid-Neoproterozoic Bitter Springs Group, central Australia, are investigated to elucidate the antiquity and paleoecology of halophiles. The sediments were composed of alternating laminae of dolomitized microbial mats and up to 90% anhydrite. Solvent extraction of these samples yielded thermally well-preserved hydrocarbon biomarkers. The regularly branched C25 isoprenoid 2,6,10,14,18-pentamethylicosane, the tail-to-tail linked C30 isoprenoid squalane, and breakdown products of the head-to-head linked C40 isoprenoid biphytane, were particularly abundant in the most anhydrite-rich sediments and mark the oldest current evidence for halophilic archaea. Linear correlations between isoprenoid concentrations (normalized to n-alkanes) and the anhydrite/dolomite ratio reveal microbial consortia that fluctuated with changing salinity levels. Halophilic archaea were the dominant organisms during periods of high salinity and gypsum precipitation, while bacteria were prevalent during stages of carbonate formation. The irregularly branched C25 isoprenoid 2,6,10,15,19-pentamethylicosane (PMI), with a central tail-to-tail link, was also abundant during periods of elevated salinity, highlighting the activity of methanogens. By contrast, the irregularly branched C20 isoprenoid 2,6,11,15-tetramethylhexadecane (crocetane) was more common in dolomite-rich facies, revealing that an alternate group of archaea was active during less saline periods. Elevated concentrations of isotopically depleted heptadecane (n-C17) revealed the presence of cyanobacteria under all salinity regimes. The combination of biomarkers in the mid-Neoproterozoic Gillen Formation resembles lipid compositions from modern hypersaline cyanobacterial mats, pointing to a community composition that remained broadly constant since at least the Neoproterozoic. However, as a major contrast to most modern hypersaline environments, the Gillen evaporites did not yield any evidence for algae or other eukaryotes.This work was financially supported by the Australian Research Council (DP0557499, DP0771043, and DP1095247)

    Food sources for the Ediacara biota communities

    Get PDF
    The Ediacara biota represents the first complex macroscopic organisms in the geological record, foreshadowing the radiation of eumetazoan animals in the Cambrian explosion. However, little is known about the contingencies that lead to their emergence, including the possible roles of nutrient availability and the quality of food sources. Here we present information on primary producers in the Ediacaran based on biomarker molecules that were extracted from sediments hosting Ediacaran macrofossils. High relative abundances of algal steranes over bacterial hopanes suggest that the Ediacara biota inhabited nutrient replete environments with an abundance of algal food sources comparable to Phanerozoic ecosystems. Thus, organisms of the Ediacara biota inhabited nutrient-rich environments akin to those that later fuelled the Cambrian explosion

    Oxygen minimum zones in the early Cambrian ocean

    Get PDF
    The relationship between the evolution of early animal communities and oceanic oxygen levels remains unclear. In particular, uncertainty persists in reconstructions of redox conditions during the pivotal early Cambrian (541-510 million years ago, Ma), where conflicting datasets from deeper marine settings suggest either ocean anoxia or fully oxygenated conditions. By coupling geochemical palaeoredox proxies with a record of organic-walled fossils from exceptionally well-defined successions of the early Cambrian Baltic Basin, we provide evidence for the early establishment of modern-type oxygen minimum zones (OMZs). Both inner-and outer-shelf environments were pervasively oxygenated, whereas mid-depth settings were characterised by spatially oscillating anoxia. As such, conflicting redox signatures recovered from individual sites most likely derive from sampling bias, whereby anoxic conditions represent mid-shelf environments with higher productivity. This picture of a spatially restricted anoxic wedge contrasts with prevailing models of globally stratified oceans, offering a more nuanced and realistic account of the Proterozoic-Phanerozoic ocean transition.This work was funded by NERC (NE/K005251/1). SWP acknowledges support from a Royal Society Wolfson Research Merit Award

    De Novo sequences of Haloquadratum walsbyi from Lake Tyrrell, Australia, reveal a aariable genomic landscape

    Get PDF
    Hypersaline systems near salt saturation levels represent an extreme environment, in which organisms grow and survive near the limits of life. One of the abundant members of the microbial communities in hypersaline systems is the square archaeon, Haloquadratum walsbyi. Utilizing a short-read metagenome from Lake Tyrrell, a hypersaline ecosystem in Victoria, Australia, we performed a comparative genomic analysis of H. walsbyi to better understand the extent of variation between strains/subspecies. Results revealed that previously isolated strains/subspecies do not fully describe the complete repertoire of the genomic landscape present in H. walsbyi. Rearrangements, insertions, and deletions were observed for the Lake Tyrrell derived Haloquadratum genomes and were supported by environmental de novo sequences, including shifts in the dominant genomic landscape of the two most abundant strains. Analysis pertaining to halomucins indicated that homologs for this large protein are not a feature common for all species of Haloquadratum. Further, we analyzed ATP-binding cassette transporters (ABC-type transporters) for evidence of niche partitioning between different strains/subspecies. We were able to identify unique and variable transporter subunits from all five genomes analyzed and the de novo environmental sequences, suggesting that differences in nutrient and carbon source acquisition may play a role in maintaining distinct strains/subspecies.Funding for this was provided by the National Science Foundation (NSF) MCB Award no. 0626526 to J. Banfield, E. Allen, and K. Heidelberg
    • …
    corecore