3 research outputs found

    Predicting systemic spread in early colorectal cancer: Can we do better?

    Get PDF
    Through the implementation of national bowel cancer screening programmes we have seen a three-fold increase in early pT1 colorectal cancers, but how these lesions should be managed is currently unclear. Local excision can be an attractive option, especially for fragile patients with multiple comorbidities, but it is only safe from an oncological point of view in the absence of lymph node metastasis. Patient risk stratification through careful analysis of histopathological features in local excision or polypectomy specimens should be performed according to national guidelines to avoid under- or over-treatment. Currently national guidelines vary in their recommendations as to which factors should be routinely reported and there is no established multivariate risk stratification model to determine which patients should be offered major resectional surgery. Conventional histopathological parameters such as tumour grading or lymphovascular invasion have been shown to be predictive of lymph node metastasis in a number of studies but the inter- and intra-observer variation in reporting is high. Newer parameters including tumour budding and poorly differentiated clusters have been shown to have great potential, but again some improvement in the inter-observer variation is required. With the implementation of digital pathology into clinical practice, quantitative parameters like depth/area of submucosal invasion and proportion of stroma can be routinely assessed. In this review we present the various histopathological risk factors for predicting systemic spread in pT1 colorectal cancer and introduce potential novel quantitative variables and multivariable risk models that could be used to better define the optimal treatment of this increasingly common disease

    Lynch syndrome screening in colorectal cancer: results of a prospective 2-year regional programme validating the NICE diagnostics guidance pathway throughout a 5.2-million population

    Get PDF
    Aims Screening all patients newly diagnosed with colorectal cancer (CRC) for possible Lynch syndrome (LS) has been recommended in the United Kingdom since the National Institute for Health and Care Excellence (NICE) released new diagnostics guidance in February 2017. We sought to validate the NICE screening pathway through a prospective regional programme throughout a 5.2-million population during a 2-year period. Methods and results Pathology departments at 14 hospital trusts in the Yorkshire and Humber region of the United Kingdom were invited to refer material from patients with newly diagnosed CRC aged 50 years or over between 1 April 2017 and 31 March 2019 for LS screening. Testing consisted of immunohistochemistry for MLH1, PMS2, MSH2 and MSH6 followed by BRAF mutation analysis ± MLH1 promoter methylation testing in cases showing MLH1 loss. A total of 3141 individual specimens were submitted for testing from 12 departments consisting of 3061 unique tumours and 2791 prospectively acquired patients with CRC. Defective mismatch repair (dMMR) was observed in 15% of cases. In cases showing MLH1 loss, 76% contained a detectable BRAF mutation and, of the remainder, 77% showed MLH1 promoter hypermethylation. Of the patients included in the final analysis, 81 (2.9%) had an indication for germline testing. Conclusion LS screening using the NICE diagnostics guidance pathway is deliverable at scale identifying significant numbers of patients with dMMR. This information is used to refer patients to regional clinical genetics services in addition to informing treatment pathways including the use of adjuvant/neoadjuvant chemotherapy and immunotherapy

    Artificial intelligence for detection of microsatellite instability in colorectal cancer – a multicentric analysis of a pre-screening tool for clinical application

    Get PDF
    BACKGROUND: Microsatellite instability (MSI)/mismatch repair deficiency (dMMR) is a key genetic feature which should be tested in every patient with colorectal cancer (CRC) according to medical guidelines. Artificial intelligence (AI) methods can detect MSI/dMMR directly in routine pathology slides, but the test performance has not been systematically investigated with predefined test thresholds. METHOD: We trained and validated AI-based MSI/dMMR detectors and evaluated predefined performance metrics using nine patient cohorts of 8343 patients across different countries and ethnicities. RESULTS: Classifiers achieved clinical-grade performance, yielding an area under the receiver operating curve (AUROC) of up to 0.96 without using any manual annotations. Subsequently, we show that the AI system can be applied as a rule-out test: by using cohort-specific thresholds, on average 52.73% of tumors in each surgical cohort [total number of MSI/dMMR = 1020, microsatellite stable (MSS)/ proficient mismatch repair (pMMR) = 7323 patients] could be identified as MSS/pMMR with a fixed sensitivity at 95%. In an additional cohort of N = 1530 (MSI/dMMR = 211, MSS/pMMR = 1319) endoscopy biopsy samples, the system achieved an AUROC of 0.89, and the cohort-specific threshold ruled out 44.12% of tumors with a fixed sensitivity at 95%. As a more robust alternative to cohort-specific thresholds, we showed that with a fixed threshold of 0.25 for all the cohorts, we can rule-out 25.51% in surgical specimens and 6.10% in biopsies. INTERPRETATION: When applied in a clinical setting, this means that the AI system can rule out MSI/dMMR in a quarter (with global thresholds) or half of all CRC patients (with local fine-tuning), thereby reducing cost and turnaround time for molecular profiling
    corecore