5 research outputs found
Anatomic and MRI bases for pontine infarctions with patients presentation
Objectives: There are scarce data regarding pontine arteries anatomy, which is the basis for ischemic lesions following their occlusion. The aim of this study was to examine pontine vasculature and its relationships with the radiologic and neuro-logic features of pontine infarctions. Materials and methods: Branches of eight basilar arteries and their twigs, including the larger intrapontine branches, were microdis-sected following an injection of a 10% mixture of India ink and gelatin. Two addi-tional brain stems were prepared for microscopic examination after being stained with luxol fast blue and cresyl violet. Finally, 30 patients with pontine infarctions underwent magnetic resonance imaging (MRI) in order to determine the position and size of the infarctions. Results: The perforating arteries, which averaged 5.8 in number and 0.39 mm in diameter, gave rise to paramedian and anteromedial branches, and also to anterolateral twigs (62.5%). The longer leptomeningeal and cere-bellar arteries occasionally gave off perforating and anterolateral twigs, and either the lateral or posterior branches. Occlusion of some of these vessels resulted in the para-median (30%), anterolateral (26.7%), lateral (20%), and combined infarctions (23.3%), which were most often isolated and unilateral, and rarely bilateral (10%). They were located in the lower pons (23.3%), middle (10%) or rostral (26.7%), or in two or three portions (40%). Each type of infarction usually produced characteristic neurologic signs. The clinical significance of the anatomic findings was discussed. Conclusions: There was a good correlation between the intrapontine vascular territories, the position, size and shape of the infarctions, and the type of neurologic manifestations. (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer reviewe
Anatomic and MRI bases for medullary infarctions with patients' presentation
Objective: There is a low incidence of the medullary infarctions and sparse data about the vascular territories, as well as a correlation among the anatomic, magnetic resonance imaging (MRI) and neurologic signs. Materials and methods: Arteries of the 10 right and left sides of the brain stem were injected with India ink, fixed in formalin and microdissected. The enrolled 34 patients with medullary infarctions underwent a neurologic, MRI and Doppler examination. Results: Four types of the infarctions were distinguished according to the involved vascular territories. The isolated medial medullary infarctions (MMIs) were present in 14.7%. The complete MMIs comprised one bilateral infarction (2.9%), whilst the incomplete and partial MMIs were observed in 5.9% and 8.9%, respectively. The anterolateral infarctions (ALMIs) were very rare (2.9%). The complete and incomplete lateral infarctions (LMIs), noted in 35.3%, comprised 11.8% and 23.6%, respectively, that is, the anterior (5.9%), posterior (8.9%), deep (2.9%), and peripheral (5.9%). Dorsal ischemic lesions (DMIs) occurred in 11.8%, either as a complete (2.9%), or isolated lateral (5.9%) or medial infarctions (2.9%). The remaining ischemic regions belonged to various combined infarctions of the MMI, ALMI, LMI and DMI (35.3%). The infarctions most often affected the upper medulla (47.1%), middle (11.8%), or both (29.5%). Several motor and sensory signs were manifested following infarctions, including vestibular, cerebellar, ocular, sympathetic, respiratory and auditory symptoms. Conclusions: There was a good correlation among the vascular territories, MRI ischemia features, and neurologic findings regarding the medullary infarctions.Peer reviewe
Dynamic Nature of Postpartal Carotid Artery Dissection
Craniocervical carotid artery dissection (CCAD) is an important cause of stroke in young adults, but it has rarely been reported as a cause of stroke in puerperium
Peak Resembling N-acetylaspartate (NAA) on Magnetic Resonance Spectroscopy of Brain Metastases
Background and Objectives: Differentiating between a high-grade glioma (HGG) and solitary cerebral metastasis presents a challenge when using standard magnetic resonance imaging (MRI) alone. Magnetic resonance spectroscopy (MRS), an advanced MRI technique, may assist in resolving this diagnostic dilemma. N-acetylaspartate (NAA), an amino acid found uniquely in the central nervous system and in high concentrations in neurons, typically suggests HGG over metastatic lesions in spectra from ring-enhancing lesions. This study investigates exceptions to this norm. Materials and Methods: We conducted an MRS study on 49 histologically confirmed and previously untreated patients with brain metastases, employing single-voxel (SVS) techniques with short and long echo times, as well as magnetic resonance spectroscopic imaging (MRSI). Results: In our cohort, 44 out of 49 (90%) patients demonstrated a typical MR spectroscopic profile consistent with secondary deposits: a Cho peak, very low or absent Cr, absence of NAA, and the presence of lipids. A peak at approximately 2 ppm, termed the “NAA-like peak”, was present in spectra obtained with both short and long echo times. Among the MRS data from 49 individuals, we observed a peak at 2.0 ppm in five brain metastases from mucinous carcinoma of the breast, mucinous non-small-cell lung adenocarcinoma, two metastatic melanomas, and one metastatic non-small-cell lung cancer. Pathohistological verification of mucin in two of these five cases suggested this peak likely represents N-acetyl glycoproteins, indicative of mucin expression in cancer cells. Conclusions: The identification of a prominent peak at 2.0 ppm could be a valuable diagnostic marker for distinguishing single ring-enhancing lesions, potentially associated with mucin-expressing metastases, offering a new avenue for diagnostic specificity in challenging cases