8,706 research outputs found

    Randomized Benchmarking of Quantum Gates

    Full text link
    A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standard process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized pi/2 pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.Comment: 13 page

    Radio Astronomical Polarimetry and the Lorentz Group

    Get PDF
    In radio astronomy the polarimetric properties of radiation are often modified during propagation and reception. Effects such as Faraday rotation, receiver cross-talk, and differential amplification act to change the state of polarized radiation. A general description of such transformations is useful for the investigation of these effects and for the interpretation and calibration of polarimetric observations. Such a description is provided by the Lorentz group, which is intimately related to the transformation properties of polarized radiation. In this paper the transformations that commonly arise in radio astronomy are analyzed in the context of this group. This analysis is then used to construct a model for the propagation and reception of radio waves. The implications of this model for radio astronomical polarimetry are discussed.Comment: 10 pages, accepted for publication in Astrophysical Journa

    Efficacy of an Online Native Snake Identification Search Engine for Public Use

    Get PDF
    Visual methods of species identification are used both in research and recreational contexts because they are inexpensive, non-invasive, and believed to be effective among uniquely identifiable individuals. We examined the ability of the general public to identify live snakes (Serpentes) that are native to the United States using an online snake identification search engine (SISE) produced by the North America Brown Tree Snake Control Team (NABTSCT) website, http://www.nabtsct.net. The SISE consisted of participants answering 7 descriptive questions concerning a snake and then reviewing photographs of snakes that matched that description. Using 3 species of snakes native to Texas, USA, 21% of 395 participants were able to correctly identify all of the snakes using the online SISE, 54% correctly identified 2 snakes, 18% correctly identified 1 snake, and only 7% could not identify any snakes. Participants identified the distinctly marked checkered garter snake (Thamnophis marcianus) more readily (87% of participants) than the gopher snake (Pituophis catenifer) and Trans-Pecos rat snake (Bogertophis subocularis; 55% and 46% of participants, respectively). The probability of participants correctly identifying a snake using the online SISE increased substantially if ≥4 of the 7 descriptive questions were answered correctly. The age of participants and affinity toward snakes affected participant ability to correctly answer questions about snake morphology and identify snakes. In general, participants who displayed fear of snakes were less likely to correctly identify snake species than those who expressed a snake-neutral or enthusiast attitude. Additionally, younger participants performed better, on average, than older participants. Most participants (97%) claimed they would be able to use the online SISE to correctly identify other snakes in the future. We believe the public can use the online SISE to identify snakes, and hence, it can be an educational tool for the public to learn about an often neglected wildlife suborder

    High resolution characterisation of microstructural evolution in Rbx_{x}Fe2y_{2-y}Se2_{2} crystals on annealing

    Full text link
    The superconducting and magnetic properties of phase-separated Ax_xFe2y_{2-y}Se2_2 compounds are known to depend on post-growth heat treatments and cooling profiles. This paper focusses on the evolution of microstructure on annealing, and how this influences the superconducting properties of Rbx_xFe2y_2-ySe2_2 crystals. We find that the minority phase in the as-grown crystal has increased unit cell anisotropy (c/a ratio), reduced Rb content and increased Fe content compared to the matrix. The microstructure is rather complex, with two-phase mesoscopic plate-shaped features aligned along {113} habit planes. The minority phase are strongly facetted on the {113} planes, which we have shown to be driven by minimising the volume strain energy introduced as a result of the phase transformation. Annealing at 488K results in coarsening of the mesoscopic plate-shaped features and the formation of a third distinct phase. The subtle differences in structure and chemistry of the minority phase(s) in the crystals are thought to be responsible for changes in the superconducting transition temperature. In addition, scanning photoemission microscopy has clearly shown that the electronic structure of the minority phase has a higher occupied density of states of the low binding energy Fe3d orbitals, characteristic of crystals that exhibit superconductivity. This demonstrates a clear correlation between the Fe-vacancy-free phase with high c/a ratio and the electronic structure characteristics of the superconducting phase.Comment: 6 figures v2 is exactly the same as v1. The typesetting errors in the abstract have been correcte

    Light response of pure CsI calorimeter crystals painted with wavelength-shifting lacquer

    Get PDF
    We have measured scintillation properties of pure CsI crystals used in the shower calorimeter built for a precise determination of the pi+ -> pi0 e+ nu decay rate at the Paul Scherrer Institute (PSI). All 240 individual crystals painted with a special wavelength-shifting solution were examined in a custom-build detection apparatus (RASTA=radioactive source tomography apparatus) that uses a 137Cs radioactive gamma source, cosmic muons and a light emitting diode as complementary probes of the scintillator light response. We have extracted the total light output, axial light collection nonuniformities and timing responses of the individual CsI crystals. These results predict improved performance of the 3 pi sr PIBETA calorimeter due to the painted lateral surfaces of 240 CsI crystals. The wavelength-shifting paint treatment did not affect appreciably the total light output and timing resolution of our crystal sample. The predicted energy resolution for positrons and photons in the energy range of 10-100 MeV was nevertheless improved due to the more favorable axial light collection probability variation. We have compared simulated calorimeter ADC spectra due to 70 MeV positrons and photons with a Monte Carlo calculation of an ideal detector light response.Comment: Elsevier LaTeX, 35 pages in e-print format, 15 Postscript Figures and 4 Tables, also available at http://pibeta.phys.virginia.edu/~pibeta/subprojects/csipro/tomo/rasta.p
    corecore