85 research outputs found

    On BCFW shifts of integrands and integrals

    Full text link
    In this article a first step is made towards the extension of Britto-Cachazo-Feng-Witten (BCFW) tree level on-shell recursion relations to integrands and integrals of scattering amplitudes to arbitrary loop order. Surprisingly, it is shown that the large BCFW shift limit of the integrands has the same structure as the corresponding tree level amplitude in any minimally coupled Yang-Mills theory in four or more dimensions. This implies that these integrands can be reconstructed from a subset of their `single cuts'. The main tool is powercounting Feynman graphs in a special lightcone gauge choice employed earlier at tree level by Arkani-Hamed and Kaplan. The relation between shifts of integrands and shifts of its integrals is investigated explicitly at one loop. Two particular sources of discrepancy between the integral and integrand are identified related to UV and IR divergences. This is cross-checked with known results for helicity equal amplitudes at one loop. The nature of the on-shell residue at each of the single-cut singularities of the integrand is commented upon. Several natural conjectures and opportunities for further research present themselves.Comment: 43 pages, 6 figures, v2: minor improvement in exposition, typos fixed, bibliography update

    On-shell Recursion in String Theory

    Full text link
    We prove that all open string theory disc amplitudes in a flat background obey Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion relations, up to a possible reality condition on a kinematic invariant. Arguments that the same holds for tree level closed string amplitudes are given as well. Non-adjacent BCFW-shifts are related to adjacent shifts through monodromy relations for which we provide a novel CFT based derivation. All possible recursion relations are related by old-fashioned string duality. The field theory limit of the analysis for amplitudes involving gluons is explicitly shown to be smooth for both the bosonic string as well as the superstring. In addition to a proof a less rigorous but more powerful argument based on the underlying CFT is presented which suggests that the technique may extend to a much more general setting in string theory. This is illustrated by a discussion of the open string in a constant B-field background and the closed string on the level of the sphere.Comment: 36 + 9 pages text, one figure, v3: added discussion on relation to old-fashioned factorization, typos corrected, published versio

    Holographic Superconductors in a Cohesive Phase

    Full text link
    We consider a four-dimensional N=2 gauged supergravity coupled to matter fields. The model is obtained by a U(1) gauging of a charged hypermultiplet and therefore it is suitable for the study of holographic superconductivity. The potential has a topologically flat direction and the parameter running on this "moduli space" labels the new superconducting black holes. Zero temperature solutions are constructed and the phase diagram of the theory is studied. The model has rich dynamics. The retrograde condensate is just a special case in the new class of black holes. The calculation of the entanglement entropy makes manifest the properties of a generic solution and the superconductor at zero temperature is in a confined cohesive phase. The parameter running on the topologically flat direction is a marginal coupling in the dual field theory. We prove this statement by considering the way double trace deformations are treated in the AdS/CFT correspondence. Finally, we comment on a possible connection, in the context of gauge/gravity dualities, between the geometry of the scalar manifold in N=2 supergravity models and the space of marginal deformations of the dual field theory.Comment: 32 pages, 11 figures. Introduction rewritten and clarified, comments and details on section 4 added, acknowledgements rectified. To appear in JHE

    Conformal Quivers and Melting Molecules

    Get PDF
    Quiver quantum mechanics describes the low energy dynamics of a system of wrapped D-branes. It captures several aspects of single and multicentered BPS black hole geometries in four-dimensional N=2\mathcal{N} = 2 supergravity such as the presence of bound states and an exponential growth of microstates. The Coulomb branch of an Abelian three node quiver is obtained by integrating out the massive strings connecting the D-particles. It allows for a scaling regime corresponding to a deep AdS2_2 throat on the gravity side. In this scaling regime, the Coulomb branch is shown to be an SL(2,R)SL(2,\mathbb{R}) invariant multi-particle superconformal quantum mechanics. Finally, we integrate out the strings at finite temperature---rather than in their ground state---and show how the Coulomb branch `melts' into the Higgs branch at high enough temperatures. For scaling solutions the melting occurs for arbitrarily small temperatures, whereas bound states can be metastable and thus long lived. Throughout the paper, we discuss how far the analogy between the quiver model and the gravity picture, particularly within the AdS2_2 throat, can be taken.Comment: 49 pages, 16 figure

    The Multi-Regge limit of NMHV Amplitudes in N=4 SYM Theory

    Full text link
    We consider the multi-Regge limit for N=4 SYM NMHV leading color amplitudes in two different formulations: the BFKL formalism for multi-Regge amplitudes in leading logarithm approximation, and superconformal N=4 SYM amplitudes. It is shown that the two approaches agree to two-loops for the 2->4 and 3->3 six-point amplitudes. Predictions are made for the multi-Regge limit of three loop 2->4 and 3->3 NMHV amplitudes, as well as a particular sub-set of two loop 2 ->2 +n N^kMHV amplitudes in the multi-Regge limit in the leading logarithm approximation from the BFKL point of view.Comment: 28 pages, 3 figure
    • …
    corecore