125 research outputs found
The impact of atypical intrahospital transfers on patient outcomes: a mixed methods study
The architectural design of hospitals worldwide is centred around individual departments, which require the movement of patients between wards. However, patients do not always take the simplest route from admission to discharge, but can experience convoluted movement patterns, particularly when bed availability is low. Few studies have explored the impact of these rarer, atypical trajectories. Using a mixed-method explanatory sequential study design, we firstly used three continuous years of electronic health record data prior to the Covid-19 pandemic, from 55,152 patients admitted to a London hospital network to define the ward specialities by patient type using the Herfindahl–Hirschman index. We explored the impact of ‘regular transfers’ between pairs of wards with shared specialities, ‘atypical transfers’ between pairs of wards with no shared specialities and ‘site transfers’ between pairs of wards in different hospital site locations, on length of stay, 30-day readmission and mortality. Secondly, to understand the possible reasons behind atypical transfers we conducted three focus groups and three in-depth interviews with site nurse practitioners and bed managers within the same hospital network. We found that at least one atypical transfer was experienced by 12.9% of patients. Each atypical transfer is associated with a larger increase in length of stay, 2.84 days (95% CI 2.56–3.12), compared to regular transfers, 1.92 days (95% CI 1.82–2.03). No association was found between odds of mortality, or 30-day readmission and atypical transfers after adjusting for confounders. Atypical transfers appear to be driven by complex patient conditions, a lack of hospital capacity, the need to reach specific services and facilities, and more exceptionally, rare events such as major incidents. Our work provides an important first step in identifying unusual patient movement and its impacts on key patient outcomes using a system-wide, data-driven approach. The broader impact of moving patients between hospital wards, and possible downstream effects should be considered in hospital policy and service planning
On renormalizability of the massless Thirring model
We discuss the renormalizability of the massless Thirring model in terms of
the causal fermion Green functions and correlation functions of left-right
fermion densities. We obtain the most general expressions for the causal
two-point Green function and correlation function of left-right fermion
densities with dynamical dimensions of fermion fields, parameterised by two
parameters. The region of variation of these parameters is constrained by the
positive definiteness of the norms of the wave functions of the states related
to components of the fermion vector current. We show that the dynamical
dimensions of fermion fields calculated for causal Green functions and
correlation functions of left-right fermion densities can be made equal. This
implies the renormalizability of the massless Thirring model in the sense that
the ultra-violet cut-off dependence, appearing in the causal fermion Green
functions and correlation functions of left-right fermion densities, can be
removed by renormalization of the wave function of the massless Thirring
fermion fields only.Comment: 17 pages, Latex, the contribution of fermions with opposite chirality
is added,the parameterisation of fermion determinant by two parameters is
confirmed,it is shown that dynamical dimensions of fermion fields calculated
from different correlation functions can be made equal.This allows to remove
the dependence on the ultra-violet cut-off by the renormalization of the wave
function of Thirring fermion fields onl
Inverting Time-Dependent Harmonic Oscillator Potential by a Unitary Transformation and a New Class of Exactly Solvable Oscillators
A time-dependent unitary (canonical) transformation is found which maps the
Hamiltonian for a harmonic oscillator with time-dependent real mass and real
frequency to that of a generalized harmonic oscillator with time-dependent real
mass and imaginary frequency. The latter may be reduced to an ordinary harmonic
oscillator by means of another unitary (canonical) transformation. A simple
analysis of the resulting system leads to the identification of a previously
unknown class of exactly solvable time-dependent oscillators. Furthermore, it
is shown how one can apply these results to establish a canonical equivalence
between some real and imaginary frequency oscillators. In particular it is
shown that a harmonic oscillator whose frequency is constant and whose mass
grows linearly in time is canonically equivalent with an oscillator whose
frequency changes from being real to imaginary and vice versa repeatedly.Comment: 7 pages, 1 figure include
Canonical quantization of so-called non-Lagrangian systems
We present an approach to the canonical quantization of systems with
equations of motion that are historically called non-Lagrangian equations. Our
viewpoint of this problem is the following: despite the fact that a set of
differential equations cannot be directly identified with a set of
Euler-Lagrange equations, one can reformulate such a set in an equivalent
first-order form which can always be treated as the Euler-Lagrange equations of
a certain action. We construct such an action explicitly. It turns out that in
the general case the hamiltonization and canonical quantization of such an
action are non-trivial problems, since the theory involves time-dependent
constraints. We adopt the general approach of hamiltonization and canonical
quantization for such theories (Gitman, Tyutin, 1990) to the case under
consideration. There exists an ambiguity (not reduced to a total time
derivative) in associating a Lagrange function with a given set of equations.
We present a complete description of this ambiguity. The proposed scheme is
applied to the quantization of a general quadratic theory. In addition, we
consider the quantization of a damped oscillator and of a radiating point-like
charge.Comment: 13 page
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
Background:
Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.
Findings:
Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79).
Interpretation:
In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication
- …