4 research outputs found

    Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling

    Get PDF
    Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5ÎČ1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our\ua0identification of retriever establishes a major endosomal retrieval and recycling pathway

    Drug‐resistant seizures associated with hyperinflammatory monocytes in FIRES

    No full text
    Abstract Objective Therapeutic strategies for patients with febrile infection‐related epilepsy syndrome (FIRES) are limited, ad hoc, and frequently ineffective. Based on evidence that inflammation drives pathogenesis in FIRES, we used ex vivo stimulation of peripheral blood mononuclear cells (PBMCs) to characterize the monocytic response profile before and after therapy in a child successfully treated with dexamethasone delivered intrathecally six times between hospital Day 23 and 40 at 0.25 mg/kg/dose. Methods PBMCs were isolated from serial blood draws acquired during refractory status epilepticus (RSE) and following resolution associated with intrathecal dexamethasone therapy in a previously healthy 9‐year‐old male that presented with seizures following Streptococcal pharyngitis. Cells were stimulated with bacterial or viral ligands and cytokine release was measured and compared to responses in age‐matched healthy control PBMCs. Levels of inflammatory factors in the blood and CSF were also measured and compared to pediatric healthy control ranges. Results During RSE, serum levels of IL6, CXCL8, HMGB1, S100A8/A9, and CRP were significantly elevated. IL6 was elevated in CSF. Ex vivo stimulation of PBMCs collected during RSE revealed hyperinflammatory release of IL6 and CXCL8 in response to bacterial stimulation. Following intrathecal dexamethasone, RSE resolved, inflammatory levels normalized in serum and CSF, and the PBMC hyperinflammatory response renormalized. Significance FIRES may be associated with a hyperinflammatory monocytic response to normally banal bacterial pathogens. This hyperinflammatory response may induce a profound neutrophil burden and the consequent release of factors that further exacerbate inflammation and drive neuroinflammation. Intrathecal dexamethasone may resolve RSE by resetting this inflammatory feedback loop
    corecore