9,215 research outputs found

    On the dependence of the avalanche angle on the granular layer thickness

    Full text link
    A layer of sand of thickness h flows down a rough surface if the inclination is larger than some threshold value theta which decreases with h. A tentative microscopic model for the dependence of theta with h is proposed for rigid frictional grains, based on the following hypothesis: (i) a horizontal layer of sand has some coordination z larger than a critical value z_c where mechanical stability is lost (ii) as the tilt angle is increased, the configurations visited present a growing proportion $_s of sliding contacts. Instability with respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for theta(h) in good agreement with empirical observations.Comment: 6 pages, 2 figure

    On the rigidity of a hard sphere glass near random close packing

    Full text link
    We study theoretically and numerically the microscopic cause of the mechanical stability of hard sphere glasses near their maximum packing. We show that, after coarse-graining over time, the hard sphere interaction can be described by an effective potential which is exactly logarithmic at the random close packing ϕc\phi_c. This allows to define normal modes, and to apply recent results valid for elastic networks: mechanical stability is a non-local property of the packing geometry, and is characterized by some length scale l∗l^* which diverges at ϕc\phi_c [1, 2]. We compute the scaling of the bulk and shear moduli near ϕc\phi_c, and speculate on the possible implications of these results for the glass transition.Comment: 7 pages, 4 figures. Figure 4 had a wrong unit in abscissa, which was correcte

    Effective potential in Lorentz-breaking field theory models

    Get PDF
    We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and, then, some examples of Lorentz-violating extensions of scalar QED. We observed, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz-symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we studied depend on the background tensors responsible for the Lorentz symmetry violation. This have consequences in physical quantities like, for example, in the induced mass due to Coleman-Weinberg mechanism.Comment: Version accepted for publication in EPJ

    Domain wall description of superconductivity

    Get PDF
    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.Comment: 9 pages, 5 figures, Latex. Version to appear in PL
    • …
    corecore