4 research outputs found

    Admiralty Bay Benthos Diversity: A census of a complex polar ecosystem

    No full text
    A thorough census of Admiralty Bay benthic biodiversity was completed through the synthesis of data, acquired from more than 30 years of observations. Most of the available records arise from successive Polish and Brazilian Antarctic expeditions organized since 1977 and 1982, respectively, but also include new data from joint collecting efforts during the International Polar Year (2007-2009). Geological and hydrological characteristics of Admiralty Bay and a comprehensive species checklist with detailed data on the distribution and nature of the benthic communities are provided. Approximately 1300 species of benthic organisms (excluding bacteria, fungi and parasites) were recorded from the bay's entire depth range (0-500 m). Generalized classifications and the descriptions of soft-bottom and hard-bottom invertebrate communities are presented. A time-series analysis showed seasonal and interannual changes in the shallow benthic communities, likely to be related to ice formation and ice melt within the bay. As one of the best studied regions in the maritime Antarctic Admiralty Bay represents a legacy site, where continued, systematically integrated data sampling can evaluate the effects of climate change on marine life. Both high species richness and high assemblage diversity of the Admiralty Bay shelf benthic community have been documented against the background of habitat heterogeneity

    Reproductive biology of the Antarctic “sea pen” Malacobelemnon daytoni (Octocorallia, Pennatulacea, Kophobelemnidae)

    Get PDF
    The reproductive biology of the sea pen Malacobelemnon daytoni was studied at Potter Cove, South Shetland Islands, where it is one of the dominant species in shallow waters. Specimens collected at 15–22 m depth were examined by histological analysis. M. daytoni is gonochoristic and exhibited a sex ratio of 1:1. Oocyte sizes (>300 µm) and the absence of embryos or newly developed larvae in the colonies suggest that this species can have lecithotrophic larvae and experience external fertilization. This life strategy is in line with other members of the group and supports the hypothesis that this could be a phylogenetically fixed trait for pennatulids. It was observed that oocytes were generated by gastrodermic tissue and released to the longitudinal canal. Thereafter, they migrate along the canal until they reach maturity and are released by autozooids at the top of the colonies. This striking feature has not yet been reported for other pennatulaceans. Mature oocytes were observed from colonies of 15 mm in length, suggesting that sexual maturity can be reached rapidly. This is contrary to what is hypothesized for the vast majority of Antarctic benthic invertebrates, namely that rates of activities associated with development, reproduction and growth are almost universally very slow. This strategy may also explain the ecological success of M. daytoni in areas with high ice impact as in the shallow waters of Potter Cove
    corecore