69 research outputs found

    Mixed conducting yttrium-barium-cobalt-oxide for high oxygen permeation

    Get PDF
    Yttrium-barium-cobalt-oxide (YBC), especially with low Y content, has been prepared. Oxygen permeation in these materials is very high at moderate temperature. The materials Y0.05BaCo0.95O3-δ and Y0.10Ba0.90CoO3-δ consisted of a BaCoO3-δ like main phase and some minor phases. For the Y0.05BaCo0.95O3-δ material these minor phases were not exceeding 10 vol%. Y0.05BaCo0.95O3-δ had the highest oxygen permeation value of 3.9 × 10-7 mol/cm2s at 900°C; the surface exchange reaction may be the rate limiting step here. The material Y0.33Ba0.67CoO3-δ consisted mainly of two unknown cubic phases.\u

    Kinetics and morphology of electrochemical vapour deposited thin zirconia/yttria layers on porous substrates

    Get PDF
    By means of electrochemical vapour deposition (EVD), it is possible to grow thin (0.5-5 µm), dense zirconia/yttria layers on porous ceramic substrates. Kinetics of the EVD process, morphology and oxygen permeation properties of the grown layers are investigated. Very thin (~ 0.5 µm) layers are grown at relatively low temperatures (700-800 °C). Water vapour as reactant enhances the surface reaction rate at the solid oxide/oxygen source reactant interface. A transition occurs from pore diffusion (above 1000 °C) to bulk electrochemical diffusion (below 900 °C) as rate-limiting step for layer growth. The zirconia/yttria solid solution is mainly deposited in the cubic phase; the layers grow in a typical columnar way and are polycrystalline. Oxygen permeation measurements show that the oxygen permeation flux through the zirconia/yttria layers is influenced by the layer thickness, morphology, presence of water vapour and the oxygen pressure gradient over the layer

    Oxygen semipermeable solid oxide membrane composites prepared by electrochemical vapor deposition

    Get PDF
    Ceramic membrane composites consisting of a coarse porous -alumina or two-layer porous alumina membrane support and an oxygen semipermeable gas tight thin (0.2–5 μm) yttria stabilized zirconia (YSZ) film are prepared by the electrochemical vapor deposition (EVD) method. The minimum gas-tight thickness of the YSZ films depends strongly on the average pore size of the support on which the films are deposited by the EVD process. The oxygen permeation fluxes through such gas tight YSZ membrane composites, measured in situ on the EVD apparatus, are in the range of 3 × 10−9 to 6 × 10−8 mol/cm2-sec with an oxygen partial pressures of P′O2 (high) ≈ 3 × 10−2 atm and P″O2 (low) ≈ 10−5 atm, much larger than the literature data for thicker YSZ pellets. During the oxygen permeation experiments the rate-limiting step is found to be the bulk electrochemical transport in the grown YSZ films with a thickness smaller than 10 μm.\u

    Modelling and analysis of CVD processes for ceramic membrane preparation

    Get PDF
    A mathematical model is presented that describes the modified chemical vapour deposition (CVD) process (which takes place in advance of the electrochemical vapour deposition (EVD) process) to deposit ZrO2 inside porous media for the preparation and modification of ceramic membranes. The isobaric model takes into account intrapore Knudsen diffusion of ZrCl4 and H2O, which enter the membrane from opposite sides, and Langmuir-Hinshelwood reaction of the solid product ZrO2 on the internal pore wall. The processes occurring in one single pore are investigated, and the change in pore geometry during deposition is taken into account. Based upon this model, the deposition profile is studied. The model fits reasonably well with experimental results

    Penrose Limits and Non-local theories

    Full text link
    We investigate Penrose limits of two classes of non-local theories, little string theories and non-commutative gauge theories. Penrose limits of the near-horizon geometry of NS5-branes help to shed some light on the high energy spectrum of little string theories. We attempt to understand renormalization group flow in these theories by considering Penrose limits wherein the null geodesic also has a radial component. In particular, we demonstrate that it is possible to construct a pp-wave spacetime which interpolates between the linear dilaton and the AdS regions for the Type IIA NS5-brane. Similar analysis is considered for the holographic dual geometry to non-commutative field theories.Comment: 27 pages, LaTeX; v2: added reference

    Unusual effects of anisotropy on the specific heat of ceramic and single crystal MgB2

    Full text link
    The two-gap structure in the superconducting state of MgB_2 gives rise to unusual thermodynamic properties which depart markedly from the isotropic single-band BCS model, both in their temperature- and field dependence. We report and discuss measurements of the specific heat up to 16 T on ceramic, and up to 14 T on single crystal samples, which demonstrate these effects in the bulk. The behavior in zero field is described in terms of two characteristic temperatures, a crossover temperature Tc_pi ~ 13 K, and a critical temperature Tc = Tc_sigma ~ 38 K, whereas the mixed-state specific heat requires three characteristic fields, an isotropic crossover field Hc2_pi ~ 0.35 T, and an anisotropic upper critical field with extreme values Hc2_sigma_c ~ 3.5 T and Hc2_sigma_ab ~ 19 T, where the indexes \pi and \sigma refer to the 3D and 2D sheets of the Fermi surface. Irradiation-induced interband scattering tends to move the gaps toward a common value, and increases the upper critical field up to ~ 28 T when Tc = 30 K.Comment: 31 pages, 9 figures. Accepted in the Physica C special issue on MgB

    FUV and X-ray absorption in the Warm-Hot Intergalactic Medium

    Get PDF
    The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas collapsing in large-scale filaments and probably harbours a substantial fraction of the baryons in the local Universe. Absorption-line measurements in the ultraviolet (UV) and in the X-ray band currently represent the best method to study the WHIM at low redshifts. We here describe the physical properties of the WHIM and the concepts behind WHIM absorption line measurements of H I and high ions such as O VI, O VII, and O VIII in the far-ultraviolet and X-ray band. We review results of recent WHIM absorption line studies carried out with UV and X-ray satellites such as FUSE, HST, Chandra, and XMM-Newton and discuss their implications for our knowledge of the WHIM.Comment: 26 pages, 9 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 3; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Experimental progress in positronium laser physics

    Get PDF

    Ceramic membranes by (electro) chemical vapour deposition

    No full text
    corecore