3,222 research outputs found
Circuits and circuit testing for spaceborne redundant digital systems Special technical report no. 3
Design and testing of majority logic redundancy for spaceborne and GSE digital system
Morphological instabilities of a thin film on a Penrose lattice: a Monte Carlo study
We computed by a Monte Carlo method the thermal relaxation of a
polycrystalline thin film deposited on a Penrose lattice. The thin film was
modelled by a 2 dimensional array of elementary domains, which have each a
given height. During the Monte Carlo process, the height of each of these
elementary domains is allowed to change as well as their crystallographic
orientation. After equilibrium is reached at a given numerical temperature, all
elementary domains have changed their orientation into the same one and small
islands appear, preferentially on the domains of the Penrose lattice located in
the center of heptagons. This method is a new numerical approach to study the
influence of the substrate and its defects on the islanding process of
polycrystalline films.Comment: 9 pages,5 figure
The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)
The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment
Peeled film GaAs solar cells for space power
Gallium arsenide (GaAs) peeled film solar cells were fabricated, by Organo-Metallic Vapor Phase Epitaxy (OMVPE), incorporating an aluminum arsenide (AlAs) parting layer between the device structure and the GaAs substrate. This layer was selectively removed by etching in dilute hydrofloric (HF) acid to release the epitaxial film. Test devices exhibit high series resistance due to insufficient back contact area. A new design is presented which uses a coverglass superstrate for structural support and incorporates a coplanar back contact design. Devices based on this design should have a specific power approaching 700 W/Kg
A Hamiltonian approach for explosive percolation
We introduce a cluster growth process that provides a clear connection
between equilibrium statistical mechanics and an explosive percolation model
similar to the one recently proposed by Achlioptas et al. [Science 323, 1453
(2009)]. We show that the following two ingredients are essential for obtaining
an abrupt (first-order) transition in the fraction of the system occupied by
the largest cluster: (i) the size of all growing clusters should be kept
approximately the same, and (ii) the inclusion of merging bonds (i.e., bonds
connecting vertices in different clusters) should dominate with respect to the
redundant bonds (i.e., bonds connecting vertices in the same cluster).
Moreover, in the extreme limit where only merging bonds are present, a complete
enumeration scheme based on tree-like graphs can be used to obtain an exact
solution of our model that displays a first-order transition. Finally, the
proposed mechanism can be viewed as a generalization of standard percolation
that discloses an entirely new family of models with potential application in
growth and fragmentation processes of real network systems.Comment: 4 pages, 4 figure
Active Sampling-based Binary Verification of Dynamical Systems
Nonlinear, adaptive, or otherwise complex control techniques are increasingly
relied upon to ensure the safety of systems operating in uncertain
environments. However, the nonlinearity of the resulting closed-loop system
complicates verification that the system does in fact satisfy those
requirements at all possible operating conditions. While analytical proof-based
techniques and finite abstractions can be used to provably verify the
closed-loop system's response at different operating conditions, they often
produce conservative approximations due to restrictive assumptions and are
difficult to construct in many applications. In contrast, popular statistical
verification techniques relax the restrictions and instead rely upon
simulations to construct statistical or probabilistic guarantees. This work
presents a data-driven statistical verification procedure that instead
constructs statistical learning models from simulated training data to separate
the set of possible perturbations into "safe" and "unsafe" subsets. Binary
evaluations of closed-loop system requirement satisfaction at various
realizations of the uncertainties are obtained through temporal logic
robustness metrics, which are then used to construct predictive models of
requirement satisfaction over the full set of possible uncertainties. As the
accuracy of these predictive statistical models is inherently coupled to the
quality of the training data, an active learning algorithm selects additional
sample points in order to maximize the expected change in the data-driven model
and thus, indirectly, minimize the prediction error. Various case studies
demonstrate the closed-loop verification procedure and highlight improvements
in prediction error over both existing analytical and statistical verification
techniques.Comment: 23 page
Monte Carlo approach of the islanding of polycrystalline thin films
We computed by a Monte Carlo method derived from the Solid on Solid model,
the evolution of a polycrystalline thin film deposited on a substrate during
thermal treatment. Two types of substrates have been studied: a single
crystalline substrate with no defects and a single crystalline substrate with
defects. We obtain islands which are either flat (i.e. with a height which does
not overcome a given value) or grow in height like narrow towers. A good
agreement was found regarding the morphology of numerical nanoislands at
equilibrium, deduced from our model, and experimental nanoislands resulting
from the fragmentation of YSZ thin films after thermal treatment.Comment: 20 pages, 7 figure
Fluctuating Bond Aggregation: a Model for Chemical Gel Formation
The Diffusion-Limited Cluster-Cluster Aggregation (DLCA) model is modified by
including cluster deformations using the {\it bond fluctuation} algorithm. From
3 computer simulations, it is shown that, below a given threshold value
of the volumic fraction , the realization of all intra-aggregate
bonding possibilities prevents the formation of a gelling network. For ,
the sol-gel transition occurs at a time which, in contrast to DLCA,
doesnot diverge with the box size. Several results are reported including small
angle scattering curves and possible applications are discussed.Comment: RevTex, 9 pages + 3 postscript figures appended using "uufiles". To
appear in Phys. Rev. Let
Influence of surfactants on the structure of titanium oxide gels : experiments and simulations
We report here on experimental and numerical studies of the influence of
surfactants on mineral gel synthesis. The modification of the gel structure
when the ratios water-precursor and water-surfactant vary is brought to the
fore by fractal dimension measures. A property of {\em polydispersity of the
initial hydrolysis} is proposed to explain these results, and is successfuly
tested through numerical experiments of three dimensional chemically limited
aggregation.Comment: 12 pages, 4 Postscript figures, uses RevTe
Band Formation during Gaseous Diffusion in Aerogels
We study experimentally how gaseous HCl and NH_3 diffuse from opposite sides
of and react in silica aerogel rods with porosity of 92 % and average pore size
of about 50 nm. The reaction leads to solid NH_4Cl, which is deposited in thin
sheet-like structures. We present a numerical study of the phenomenon. Due to
the difference in boundary conditions between this system and those usually
studied, we find the sheet-like structures in the aerogel to differ
significantly from older studies. The influence of random nucleation centers
and inhomogeneities in the aerogel is studied numerically.Comment: 7 pages RevTex and 8 figures. Figs. 4-8 in Postscript, Figs. 1-3 on
request from author
- …
