140 research outputs found

    Microbial precipitation of Pb(II) with wild strains of Paraclostridium bifermentans and Klebsiella pneumoniae isolated from an industrially obtained microbial consortium

    Get PDF
    The study focused on determining the microbial precipitation abilities of bacterial strains that were isolated from an industrially obtained Pb(II)-resistant microbial consortium. Previous research has demonstrated the effectiveness of the consortium on the bioprecipitation and adsorption of Pb(II) from solution. The bioremediation of Pb(II) using microbial precipitation provides an alternative option for Pb(II) removal from wastewater. Both strains, Klebsiella pneumoniae and Paraclostridium bifermentans, were successfully isolated from the consortium obtained from a battery recycling plant in South Africa. The experiments were conducted over both 30 h and 5 d, providing insight into the short- and long-term precipitation abilities of the bacteria. Various initial concentrations of Pb(II) were investigated, and it was found that P. bifermentans was able to remove 83.8% of Pb(II) from solution with an initial Pb(II) concentration of 80 mg L−1 , while K. pneumoniae was able to remove 100% of Pb(II) with the same initial Pb(II) concentration after approximately 5 d. With the same initial Pb(II) concentration, P. bifermentans was able to remove 86.1% of Pb(II) from solution, and K. pneumoniae was able to remove 91.1% of Pb(II) from solution after 30 h. The identities of the precipitates obtained for each strain vary, with PbS and Pb0 being the main species precipitated by P. bifermentans and PbO with either PbCl or Pb3(PO4 )2 precipitated by K. pneumoniae. Various factors were investigated in each experiment, such as metabolic activity, nitrate concentration, residual Pb(II) concentration, extracellular and intracellular Pb(II) concentration and the precipitate identity. These factors provide a greater understanding of the mechanisms utilised by the bacteria in the bioprecipitation and adsorption of Pb(II). These results can be used as a step towards applying the process on an industrial scale.DATA AVAILABILITY STATEMENT : The data presented in this study are openly available in the University of Pretoria Research Data Repository at doi: 10.25403/UPresearchdata.21324492The National Research Foundation of South Africa.https://www.mdpi.com/journal/ijerphChemical Engineerin

    Stability of metallic stripes in the extended one-band Hubbard model

    Full text link
    Based on an unrestricted Gutzwiller approximation (GA) we investigate the stripe orientation and periodicity in an extended one-band Hubbard model. A negative ratio between next-nearest and nearest neighbor hopping t'/t, as appropriate for cuprates, favors partially filled (metallic) stripes for both vertical and diagonal configurations. At around optimal doping diagonal stripes, site centered (SC) and bond centered (BC) vertical stripes become degenerate suggesting strong lateral and orientational fluctuations. We find that within the GA the resulting phase diagram is in agreement with experiment whereas it is not in the Hartree-Fock approximation due to a strong overestimation of the stripe filling. Results are in agreement with previous calculations within the three-band Hubbard model but with the role of SC and BC stripes interchanged.Comment: 10 pages, 8 figure

    Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial

    Get PDF
    Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales.Toxicolog

    Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

    Get PDF
    BackgroundThe ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur.AimWe aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available.MethodsHere we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.ResultsThe workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive - Global (EVAg), a European Union infrastructure project.ConclusionThe present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks
    • …
    corecore