589 research outputs found
Orientation of Demagnetized Bees
The orientation of honey bee dances is affected by the earth's magnetic field. Honey bees possess localized, well-oriented, stable and superparamagnetic domains of magnetite. Four lines of evidence suggest that the superparamagnetic domains of bees are more likely to be involved in magnetic field detectors than the stable domains. (1) Although the stable domains vary widely in size and number between bees, approximately 2×10^8 superparamagnetic domains are found reliably in all bees, and are restricted to there latively narrow size range of 300–350 Å. This suggests that the superparamagnetic domains are more likely to have a biological function. (2) Behavioural observations of dances in null fields are difficult to reconcile with astable-domain detector but are clearly predicted by many superparamagnetic detector models. (3) When honey bees are demagnetized, their ability to orient to the earth's field is unaffected. This suggests that the detector either utilizes the super paramagnetic domains or depends on aligned anisotropic stable domains processed without regard to magneticpolarity. (4) Bees that have only superparamagnetic domains are able nevertheless to orient to the earth's magnetic field, a phenomenon which indicates that permanent domains may not be required for detection
Low oxygen tension primes aortic endothelial cells to the reparative effect of tissue-protective cytokines
Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared to 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis
Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor
Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in non-hematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP)). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects
Non-erythropoietic erythropoietin derivatives protect from light-induced and genetic photoreceptor degeneration
Given the high genetic heterogeneity of inherited retinal degenerations (IRDs), a wide applicable treatment would be desirable to halt/slow progressive photoreceptor (PR) cell loss in a mutation-independent manner. In addition to its erythropoietic activity, erythropoietin (EPO) presents neurotrophic characteristics. We have previously shown that adeno-associated viral (AAV) vector-mediated systemic EPO delivery protects from PR degeneration. However, this is associated with an undesired hematocrit increase that could contribute to PR protection. Non-erythropoietic EPO derivatives (EPO-D) are available which allow us to dissect erythropoiesis's role in PR preservation and may be more versatile and safe than EPO as anti-apoptotic agents. We delivered in animal models of light-induced or genetic retinal degeneration either intramuscularly or subretinally AAV vectors encoding EPO or one of the three selected EPO-D: the mutant S100E, the helix A- and B-derived EPO-mimetic peptides. We observed that (i) systemic expression of S100E induces a significantly lower hematocrit increase than EPO and provides similar protection from PR degeneration, and (ii) intraocular expression of EPO-D protects PR from degeneration in the absence of significant hematocrit increase. On the basis of this, we conclude that erythropoiesis is not required for EPO-mediated PR protection. However, the lower efficacy observed when EPO or S100E is expressed intraocularly rather than systemically suggests that hormone systemic effects contribute to PR protection. Unlike S100E, EPO-mimetic peptides preserve PR only when given locally, suggesting that different EPO-D have a different potency or mode of action. In conclusion, our data show that subretinal delivery of AAV vectors encoding EPO-D protects from light-induced and genetic PR degeneration
Erythropoietin Ameliorates Rat Experimental Autoimmune Neuritis by Inducing Transforming Growth Factor-Beta in Macrophages
Erythropoietin (EPO) is a pleiotropic cytokine originally identified for its role in erythropoiesis. In addition, in various preclinical models EPO exhibited protective activity against tissue injury. There is an urgent need for potent treatments of autoimmune driven disorders of the peripheral nervous system (PNS), such as the Guillain-Barré syndrome (GBS), a disabling autoimmune disease associated with relevant morbidity and mortality. To test the therapeutic potential of EPO in experimental autoimmune neuritis (EAN) - an animal model of human GBS – immunological and clinical effects were investigated in a preventive and a therapeutic paradigm. Treatment with EPO reduced clinical disease severity and if given therapeutically also shortened the recovery phase of EAN. Clinical findings were mirrored by decreased inflammation within the peripheral nerve, and myelin was well maintained in treated animals. In contrast, EPO increased the number of macrophages especially in later stages of the experimental disease phase. Furthermore, the anti-inflammatory cytokine transforming growth factor (TGF)-beta was upregulated in the treated cohorts. In vitro experiments revealed less proliferation of T cells in the presence of EPO and TGF-beta was moderately induced, while the secretion of other cytokines was almost not altered by EPO. Our data suggest that EPO revealed its beneficial properties by the induction of beneficial macrophages and the modulation of the immune system towards anti-inflammatory responses in the PNS. Further studies are warranted to elaborate the clinical usefulness of EPO for treating immune-mediated neuropathies in affected patients
ARA 290, a peptide derived from the tertiary structure of erythropoietin, produces long-term relief of neuropathic pain coupled with suppression of the spinal microglia response
BACKGROUND:
Neuropathic pain is a difficult to treat disorder arising from central or peripheral nervous system lesions. The etiology of neuropathic pain consists of several overlapping pathways converging into an exaggerated pain state with symptoms such as allodynia and hyperalgesia. One of these pathways involves activation of spinal cord microglia and astrocytes, which drive and maintain the inflammatory response following the lesion. These cells are a potential target for drugs for neuropathic pain relief. In this current study, we investigated the dose-effect relationship of the tissue protective peptide ARA 290, derived from the tertiary structure of erythropoietin, on allodynia and concurrent spinal cord microglia and astrocytes.
RESULTS:
Following a spared nerve injury in rats, vehicle or ARA290 (administered in either one of 4 doses: 3, 10, 30 and 60 μg/kg) was administered on days 1, 3, 6, 8 and 10. ARA290 exerted a dose-response effect by significantly reducing mechanical allodynia up to 20 weeks when compared to vehicle. The reduction of cold allodynia was significant up to 20 weeks for the doses 3, 10, 30 and 60 μg/kg when compared to vehicle. The effect 10 and 30 μg/kg ARA290 and vehicle on the microglia response (iba-1-immunoreactivity, iba-1-IR) and astrocyte reaction (GFAP-immunoreactivity, GFAP-IR) was investigated in animals surviving 2 (group 1) or 20 (group 2) weeks following lesion or sham surgery. In group 1, significant microglia reactivity was observed in the L5 segment of the spinal cord of animals treated with vehicle when compared to sham operated, while animals treated with 10 or 30 μg/kg did not show a increase. In group 2, a more widespread and increased microglia reactivity was observed for animals treated with 0 and 10 μg/kg when compared to sham operated animals, indicated by involvement of more spinal cord segments and higher iba-1-IR. Animals treated with 30 μg/kg did not show increased microglia reactivity. No difference in astrocyte reaction was observed.
CONCLUSIONS:
The erythropoietin-analogue ARA290 dose-dependently reduced allodynia coupled to suppression of the spinal microglia response, suggestive of a mechanistic link between ARA290-induced suppression of central inflammation and relief of neuropathic pain symptoms.Perioperative Medicine: Efficacy, Safety and OutcomeAnesthesiolog
ERYTHROPOIETIN FOR THE TREATMENT OF SUBARACHNOID HEMORRAGE: A FEASIBLE INGREDIENT FOR A SUCCESS MEDICAL RECIPE
Subaracnhoid hemorrage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Althoug an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbility and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered fo the treatment of cerebral vasospasm. In recent years, the mechanism contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been intensively investigated. A number of pathological processes have been identified in the pathogenesis of vasospasm including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. to date, the current therapeutic interventions remain ineffective being limited to the manipulation os systemic blood pressure, variation of blood volume and viscosity, and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO), has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is systematically administered. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the recurrent review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrage
- …