2 research outputs found

    Aerosol Composition, Mixing State, and Phase State of Free Tropospheric Particles and Their Role in Ice Cloud Formation

    No full text
    The prediction of ice cloud formation in the atmosphere remains challenging. Free tropospheric aerosols can act as ice nucleating particles, affecting cloud properties and precipitation. The physicochemical properties of free tropospheric particles are modified upon long-range transport by different atmospheric processes. These modifications affect the ice formation potential of individual particles. We investigated the physicochemical properties of free tropospheric particles collected at the remote Pico Mountain Observatory at 2225 m a.s.l. in the North Atlantic Ocean using multimodal micro-spectroscopy and chemical imaging techniques. We probed their ice nucleation (IN) activity using an IN stage interfaced with an environmental scanning electron microscope. Retroplume analysis, chemical imaging, and micro-spectroscopy analysis indicated that the size-resolved chemical composition, mixing state, and phase state of the particles with similar aging times but different transport patterns were substantially different. Relative humidity-dependent glass-transition temperatures estimated from meteorological conditions were consistent with the observed organic component of the particles\u27 phase. More viscous (solid and semi-solid-like) particles are more ice active in the deposition mode at temperatures ranging from 205 to 220 K than less viscous particles. This study provides a better understanding of the phase and mixing state of long-range transported free tropospheric aerosols and their role in ice cloud formation

    Particle phase-state variability in the North Atlantic free troposphere during summertime is determined by atmospheric transport patterns and sources

    No full text
    Free tropospheric aerosol particles have important but poorly constrained climate effects due to transformations of their physicochemical properties during long-range transport. In this study, we investigate the chemical composition and provide an overview of the phase states of individual particles that have undergone long-range transport over the North Atlantic Ocean in June and July 2014, 2015, and 2017 to the Observatory of Mount Pico (OMP) in the Azores. The OMP is an ideal site for studying long-range-transported free tropospheric particles because local emissions have a negligible influence and contributions from the boundary layer are rare. We used the FLEXible PARTicle Lagrangian particle dispersion model (FLEXPART) to determine the origins and transport trajectories of sampled air masses and found that most of them originated from North America and recirculated over the North Atlantic Ocean. The FLEXPART analysis showed that the sampled air masses were highly aged (average plume age \u3e10 d). Size-resolved chemical compositions of individual particles were probed using computer-controlled scanning electron microscopy with an energy-dispersive X-ray spectrometer (CCSEM-EDX) and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS). CCSEM-EDX results showed that the most abundant particle types were carbonaceous (∼ 29.9 % to 82.0 %), sea salt (∼ 0.3 % to 31.6 %), and sea salt with sulfate (∼ 2.4 % to 31.5 %). We used a tilted stage interfaced within an environmental scanning electron microscope (ESEM) to determine the phase states of individual submicron particles. We found that most particles (∼ 47 % to 99 %) were in the liquid state at the time of collection due to inorganic inclusions. Moreover, we also observed substantial fractions of solid and semisolid particles (∼ 0 % to 30 % and ∼ 1 % to 42 %, respectively) during different transport patterns and events, reflecting the particles\u27 phase-state variability for different atmospheric transport events and sources. Combining phase state measurements with FLEXPART CO tracer analysis, we found that wildfire-influenced plumes can result in particles with a wide range of viscosities after long-range transport in the free troposphere. We also used temperature and RH values extracted from the Global Forecast System (GFS) along the FLEXPART-simulated path to predict the phase state of the particles during transport and found that neglecting internal mixing with inorganics would lead to an overestimation of the viscosity of free tropospheric particles. Our findings warrant future investigation aiming at the quantitative assessment of the influence of internal mixing on the phase states of the individual particles. This study also provides insights into the chemical composition and phase state of free tropospheric particles, which can help models to reduce uncertainties about the effects of ambient aerosol particles on climate
    corecore