2,321 research outputs found

    Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase

    Get PDF
    Replication factor-A (RF-A) is a three-subunit protein complex originally purified from human cells as an essential component for SV40 DNA replication in vitro. We have previously identified a functionally homologous three-subunit protein complex from the yeast Saccharomyces cerevisiae. Here we report the cloning and characterization of the genes encoding RF-A from S. cerevisiae. Each of the three subunits is encoded by a single essential gene. Cells carrying null mutations in any of the three genes arrest as budded and multiply budded cells. All three genes are expressed in a cell-cycle-dependent manner; the mRNA for each subunit peaks at the G1/S-phase boundary. A comparison of protein sequences indicates that the human p34 subunit is 29% identical to the corresponding RFA2 gene product. However, expression of the human protein fails to rescue the rfa2::TRP1 disruption

    Uniformly accelerating black holes in a de Sitter universe

    Get PDF
    A class of exact solutions of Einstein's equations is analysed which describes uniformly accelerating charged black holes in an asymptotically de Sitter universe. This is a generalisation of the C-metric which includes a cosmological constant. The physical interpretation of the solutions is facilitated by the introduction of a new coordinate system for de Sitter space which is adapted to accelerating observers in this background. The solutions considered reduce to this form of the de Sitter metric when the mass and charge of the black holes vanish.Comment: 6 pages REVTeX, 3 figures, to appear in Phys. Rev. D. Figure 2 correcte

    Coupling of the lattice and superlattice deformations and hysteresis in thermal expansion for the quasi one-dimensional conductor TaS3_3

    Full text link
    An original interferometer-based setup for measurements of length of needle-like samples is developed, and thermal expansion of o-TaS3_3 crystals is studied. Below the Peierls transition the temperature hysteresis of length LL is observed, the width of the hysteresis loop δL/L\delta L/L being up to 51055 \cdot 10^{-5}. The behavior of the loop is anomalous: the length changes so that it is in front of its equilibrium value. The hysteresis loop couples with that of conductivity. The sign and the value of the length hysteresis are consistent with the strain dependence of the charge-density waves (CDW) wave vector. With lowering temperature down to 100 K the CDW elastic modulus grows achieving a value comparable with the lattice Young modulus. Our results could be helpful in consideration of different systems with intrinsic superstructures.Comment: 4 pages, 3 figures. Phys. Rev. Lett., accepted for publicatio

    Curvature tensors on distorted Killing horizons and their algebraic classification

    Full text link
    We consider generic static spacetimes with Killing horizons and study properties of curvature tensors in the horizon limit. It is determined that the Weyl, Ricci, Riemann and Einstein tensors are algebraically special and mutually aligned on the horizon. It is also pointed out that results obtained in the tetrad adjusted to a static observer in general differ from those obtained in a free-falling frame. This is connected to the fact that a static observer becomes null on the horizon. It is also shown that finiteness of the Kretschmann scalar on the horizon is compatible with the divergence of the Weyl component Ψ3\Psi_{3} or Ψ4\Psi_{4} in the freely falling frame. Furthermore finiteness of Ψ4\Psi_{4} is compatible with divergence of curvature invariants constructed from second derivatives of the Riemann tensor. We call the objects with finite Krestschmann scalar but infinite Ψ4\Psi_{4} ``truly naked black holes''. In the (ultra)extremal versions of these objects the structure of the Einstein tensor on the horizon changes due to extra terms as compared to the usual horizons, the null energy condition being violated at some portions of the horizon surface. The demand to rule out such divergencies leads to the constancy of the factor that governs the leading term in the asymptotics of the lapse function and in this sense represents a formal analog of the zeroth law of mechanics of non-extremal black holes. In doing so, all extra terms in the Einstein tensor automatically vanish.Comment: 21 pages, To appear in Class. Quant. Gra

    Quantum Creation of Topological Black Hole

    Get PDF
    The constrained instanton method is used to study quantum creation of a vacuum or charged topological black hole. At the WKBWKB level, the relative creation probability is the exponential of a quarter sum of the horizon areas associated with the seed instanton.Comment: Report-no change onl

    Tuning electronic structures via epitaxial strain in Sr2IrO4 thin films

    Get PDF
    We have synthesized epitaxial Sr2IrO4 thin-films on various substrates and studied their electronic structures as a function of lattice-strains. Under tensile (compressive) strains, increased (decreased) Ir-O-Ir bond-angles are expected to result in increased (decreased) electronic bandwidths. However, we have observed that the two optical absorption peaks near 0.5 eV and 1.0 eV are shifted to higher (lower) energies under tensile (compressive) strains, indicating that the electronic-correlation energy is also affected by in-plane lattice-strains. The effective tuning of electronic structures under lattice-modification provides an important insight into the physics driven by the coexisting strong spin-orbit coupling and electronic correlation.Comment: 9 pages, 5 figures, 1 tabl

    Gravitational wave detectors based on matter wave interferometers (MIGO) are no better than laser interferometers (LIGO)

    Full text link
    We show that a recent claim that matter wave interferometers have a much higher sensitivity than laser interferometers for a comparable physical setup is unfounded. We point out where the mistake in the earlier analysis is made. We also disprove the claim that only a description based on the geodesic deviation equation can produce the correct physical result. The equations for the quantum dynamics of non-relativistic massive particles in a linearly perturbed spacetime derived here are useful for treating a wider class of related physical problems. A general discussion on the use of atom interferometers for the detection of gravitational waves is also provided.Comment: 16 pages, REVTeX4; minor changes, one figure and a few references were added, an additional appendix was included where we explain why, contrary to the claims in gr-qc/0409099, the effects due to the reflection off the mirrors cancel out in the final result for the phase shif

    The Isaacson expansion in quantum cosmology

    Get PDF
    This paper is an application of the ideas of the Born-Oppenheimer (or slow/fast) approximation in molecular physics and of the Isaacson (or short-wave) approximation in classical gravity to the canonical quantization of a perturbed minisuperspace model of the kind examined by Halliwell and Hawking. Its aim is the clarification of the role of the semiclassical approximation and the backreaction in such a model. Approximate solutions of the quantum model are constructed which are not semiclassical, and semiclassical solutions in which the quantum perturbations are highly excited.Comment: Revtex, 11 journal or 24 preprint pages. REPLACEMENT: A comment on previous work by Dowker and Laflamme is corrected. Utah preprint UU-REL-93/3/1

    Global Structure of a Black-Hole Cosmos and its Extremes

    Get PDF
    We analyze the global structure of a family of Einstein-Maxwell solutions parametrized by mass, charge and cosmological constant. In a qualitative classification there are: (i) generic black-hole solutions, describing a Wheeler wormhole in a closed cosmos of spatial topology S2×S1S^2\times S^1; (ii) generic naked-singularity solutions, describing a pair of ``point" charges in a closed cosmos; (iii) extreme black-hole solutions, describing a pair of ``horned" particles in an otherwise closed cosmos; (iv) extreme naked-singularity solutions, in which a pair of point charges forms and then evaporates, in a way which is not even weakly censored; and (v) an ultra-extreme solution. We discuss the properties of the solutions and of various coordinate systems, and compare with the Kastor-Traschen multi-black-hole solutions.Comment: 11 pages. Diagrams not include
    corecore