101 research outputs found

    The impact of groundwater and agricultural expansion on the archaeological sites at Luxor, Egypt

    Full text link
    Pharaonic monuments represent the most valuable source of ancient Egypt, covering the period of approximately 3000-300 B.C. Karnak and Luxor temples represent the monuments of the east bank of Thebes, the old capital of Egypt. These monuments are currently threatened due to rising groundwater levels as a result of agricultural expansion after construction of the High Dam in the 1970s.Deterioration of archaeological sites at Luxor includes disintegration and exfoliation of stones, dissolution of building materials, loss of moral paintings, crystallization of salts in walls and columns, stone bleeding, destruction of wall paintings and texts, decreasing the durability of monumental stones, and discoloring.The hydrogeologic and climatic conditions combined with irrigation practices facilitated the weathering processes to take part in deterioration of archaeological sites at Luxor area. Many varieties of salt species are found in groundwater at the study area which react with country rocks including the archaeological foundations. These salts are not in equilibrium but in a dissolution and/or dissolution-precipitation phases which are responsible for the different types of deterioration features of Luxor and karnak temples including dissolution of the salts or minerals of the building stones and/or precipitation and crystallization of new salts. © 2014 Elsevier Ltd

    Internet of Things in Water Management and Treatment

    Get PDF
    The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality are presented. The applications of IoT solutions based on these discoveries are also discussed

    Linking Climate Change and Groundwater

    Get PDF

    Climate change predicted to increase kidney stone prevalence in the US

    No full text
    • …
    corecore