74 research outputs found

    Optical calibration of large format adaptive mirrors

    Full text link
    Adaptive (or deformable) mirrors are widely used as wavefront correctors in adaptive optics systems. The optical calibration of an adaptive mirror is a fundamental step during its life-cycle: the process is in facts required to compute a set of known commands to operate the adaptive optics system, to compensate alignment and non common-path aberrations, to run chopped or field-stabilized acquisitions. In this work we present the sequence of operations for the optical calibration of adaptive mirrors, with a specific focus on large aperture systems such as the adaptive secondaries. Such systems will be one of the core components of the extremely large telescopes. Beyond presenting the optical procedures, we discuss in detail the actors, their functional requirements and the mutual interactions. A specific emphasys is put on automation, through a clear identification of inputs, outputs and quality indicators for each step: due to a high degrees-of-freedom count (thousands of actuators), an automated approach is preferable to constraint the cost and schedule. In the end we present some algorithms for the evaluation of the measurement noise; this point is particularly important since the calibration setup is typically a large facility in an industrial environment, where the noise level may be a major show-stopper.Comment: 50 pages. Final report released for the project "Development and test of a new CGH-based technique with automated calibration for future large format Adaptive-Optics Mirrors", funded under the INAF -TecnoPRIN 2010. Published by INAF - Osservatorio Astrofisico di Arcetri. ISBN: 978-88-908876-1-

    Optical calibration of large format adaptive mirrors

    Get PDF
    Adaptive (or deformable) mirrors are widely used as wavefront correctors in adaptive optics systems. The optical calibration of an adaptive mirror is a fundamental step during its life-cycle: the process is in facts required to compute a set of known commands to operate the adaptive optics system, to compensate alignment and non common-path aberrations, to run chopped or field-stabilized acquisitions. In this work we present the sequence of operations for the optical calibration of adaptive mirrors, with a specific focus on large aperture systems such as the adaptive secondaries. Such systems will be one of the core components of the extremely large telescopes. Beyond presenting the optical procedures, we discuss in detail the actors, their functional requirements and the mutual interactions. A specific emphasys is put on automation, through a clear identification of inputs, outputs and quality indicators for each step: due to a high degrees-of-freedom count (thousands of actuators), an automated approach is preferable to constraint the cost and schedule. In the end we present some algorithms for the evaluation of the measurement noise; this point is particularly important since the calibration setup is typically a large facility in an industrial environment, where the noise level may be a major show-stopper

    On the use of asymmetric PSF on NIR images of crowded stellar fields

    Full text link
    We present data collected using the camera PISCES coupled with the Firt Light Adaptive Optics (FLAO) mounted at the Large Binocular Telescope (LBT). The images were collected using two natural guide stars with an apparent magnitude of R<13 mag. During these observations the seeing was on average ~0.9". The AO performed very well: the images display a mean FWHM of 0.05 arcsec and of 0.06 arcsec in the J- and in the Ks-band, respectively. The Strehl ratio on the quoted images reaches 13-30% (J) and 50-65% (Ks), in the off and in the central pointings respectively. On the basis of this sample we have reached a J-band limiting magnitude of ~22.5 mag and the deepest Ks-band limiting magnitude ever obtained in a crowded stellar field: Ks~23 mag. J-band images display a complex change in the shape of the PSF when moving at larger radial distances from the natural guide star. In particular, the stellar images become more elongated in approaching the corners of the J-band images whereas the Ks-band images are more uniform. We discuss in detail the strategy used to perform accurate and deep photometry in these very challenging images. In particular we will focus our attention on the use of an updated version of ROMAFOT based on asymmetric and analytical Point Spread Functions. The quality of the photometry allowed us to properly identify a feature that clearly shows up in NIR bands: the main sequence knee (MSK). The MSK is independent of the evolutionary age, therefore the difference in magnitude with the canonical clock to constrain the cluster age, the main sequence turn off (MSTO), provides an estimate of the absolute age of the cluster. The key advantage of this new approach is that the error decreases by a factor of two when compared with the classical one. Combining ground-based Ks with space F606W photometry, we estimate the absolute age of M15 to be 13.70+-0.80 Gyr.Comment: 15 pages, 7 figures, presented at the SPIE conference 201

    Numerical control matrix rotation for the LINC-NIRVANA Multi-Conjugate Adaptive Optics system

    Full text link
    LINC-NIRVANA will realize the interferometric imaging focal station of the Large Binocular Telescope. A double Layer Oriented multi-conjugate adaptive optics system assists the two arms of the interferometer, supplying high order wave-front correction. In order to counterbalance the field rotation, mechanical derotation for the two ground wave-front sensors, and optical derotators for the mid-high layers sensors fix the positions of the focal planes with respect to the pyramids aboard the wave-front sensors. The derotation introduces pupil images rotation on the wavefront sensors: the projection of the deformable mirrors on the sensor consequently change. The proper adjustment of the control matrix will be applied in real-time through numerical computation of the new matrix. In this paper we investigate the temporal and computational aspects related to the pupils rotation, explicitly computing the wave-front errors that may be generated.Comment: 6 pages, 2 figures, presented at SPIE Symposium "Astronomical Telescopes and Instrumentation'' conference "Adaptive Optics Systems II'',Sunday 27 June 2010, San Diego, California, US

    New Extinction and Mass Estimates of the Low-mass Companion 1RXS 1609 B with the Magellan AO System: Evidence of an Inclined Dust Disk

    Get PDF
    We used the Magellan adaptive optics system to image the 11 Myr substellar companion 1RXS 1609 B at the bluest wavelengths to date (z' and Ys). Comparison with synthetic spectra yields a higher temperature than previous studies of Teff=2000±100KT_\mathrm{eff}=2000\pm100\mathrm{K} and significant dust extinction of AV=4.5−0.7+0.5A_V=4.5^{+0.5}_{-0.7} mag. Mass estimates based on the DUSTY tracks gives 0.012-0.015 Msun, making the companion likely a low-mass brown dwarf surrounded by a dusty disk. Our study suggests that 1RXS 1609 B is one of the 25% of Upper Scorpius low-mass members harboring disks, and it may have formed like a star and not a planet out at 320 AU.Comment: 5 pages, 4 figures; accepted to ApJ

    New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion CT Chamaeleontis B with the Magellan AO System

    Get PDF
    We used the Magellan adaptive optics (MagAO) system and its VisAO CCD camera to image the young low mass brown dwarf companion CT Chamaeleontis B for the first time at visible wavelengths. We detect it at r', i', z', and Ys. With our new photometry and Teff~2500 K derived from the shape its K-band spectrum, we find that CT Cha B has Av = 3.4+/-1.1 mag, and a mass of 14-24 Mj according to the DUSTY evolutionary tracks and its 1-5 Myr age. The overluminosity of our r' detection indicates that the companion has significant Halpha emission and a mass accretion rate ~6*10^-10 Msun/yr, similar to some substellar companions. Proper motion analysis shows that another point source within 2" of CT Cha A is not physical. This paper demonstrates how visible wavelength AO photometry (r', i', z', Ys) allows for a better estimate of extinction, luminosity, and mass accretion rate of young substellar companions.Comment: Accepted for publication in ApJ; 6 figure

    IBIS-TRE-01: Conceptual design of the IBIS 2.0 polarimetric unit

    Get PDF
    This document describes the polarimetric and optical design of the IBIS 2.0 polarimetric unit. Designed for the German Vacuum Tower Telescope, it will allow to acquire high resolution spectro-polarimetric data of the solar photosphere and chromosphere

    New Spatially Resolved Observations of the T Cha Transition Disk and Constraints on the Previously Claimed Substellar Companion

    Get PDF
    We present multi-epoch non-redundant masking observations of the T Cha transition disk, taken at the VLT and Magellan in H, Ks, and L' bands. T Cha is one of a small number of transition disks that host companion candidates discovered by high-resolution imaging techniques, with a putative companion at a position angle of 78 degrees, separation of 62 mas, and contrast at L' of 5.1 mag. We find comparable binary parameters in our re-reduction of the initial detection images, and similar parameters in the 2011 L', 2013 NaCo L', and 2013 NaCo Ks data sets. We find a close-in companion signal in the 2012 NaCo L' dataset that cannot be explained by orbital motion, and a non-detection in the 2013 MagAO/Clio2 L' data. However, Monte-carlo simulations show that the best fits to the 2012 NaCo and 2013 MagAO/Clio2 followup data may be consistent with noise. There is also a significant probability of false non-detections in both of these data sets. We discuss physical scenarios that could cause the best fits, and argue that previous companion and scattering explanations are inconsistent with the results of the much larger dataset presented here.Comment: 25 pages, 22 figures, accepted for publication in Ap
    • …
    corecore