48 research outputs found

    Molecular solvent design and near critical solvents optimization with ecofac

    Get PDF
    In this work an efficient analysis tool for separation process design and property predictions is presented. ECOFAC can estimate pure compound and solution properties, specially some of environmental interest, generate the best potential solvents for a specific liquid-liquid extraction or extractive distillation problem through molecular design, or find the optimal operating conditions for a given supercritical extraction process.Fil: Cismondi Duarte, MartĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: DĂ­az, MarĂ­a Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Espinosa, Susana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentin

    La invenciĂłn del PLAPIQUI

    No full text
    Esta historia transcurre en Bahía Blanca y su escenario inicial es la Universidad Nacional del Sur. A principios de la década del 60 las materias formativas fundamentales de nuestra carrera de Ingeniería Química estaban cubiertas en forma precaria por profesores de otras asignaturas. Conseguir especialistas en estas materias en nuestra ciu-dad, que por entonces carecía prácticamente de industria de procesos era casi imposible. Por otra parte, durante esa época en otras regiones del país se instalaban industrias químicas y petroquímicas, altos hor-nos y refnerías, a la vez que se incentivaba la producción petrolífe-ra. En esas circunstancias, era muy difícil para nuestra Universidad competir en el reclutamiento de profesores, sea con la industria o con universidades radicadas en zonas de mayor desarrollo industrial. La búsqueda de una solución a este problema fue quizás la primera tarea que encaramos como estudiantes, junto con una nueva generación de docentes que se conformaba con los primeros graduados como inge-nieros químicos. La alternativa del autodesarrollo parecía, como lo fue fnalmente, la única alternativa viable. Este libro cuenta la historia de la construcción de la Planta Piloto de Ingeniería Química (PLAPIQUI) en la ciudad de Bahía Blanca, que nace por la convergencia de dos generaciones de jóvenes entusiasma-dos con la ciencia y la tecnología y su impacto en el desarrollo del país. El volumen cubre las primeras décadas de construcción del PLAPIQUI, su consolidación como instituto del CONICET y el desarrollo de sus pro-gramas de posgrado y de interacción industrial (PIDCOP-FUNDASUR).Fil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin

    Fractionation of essential oils with biocidal activity using supercritical CO2 - Experiments and modeling

    No full text
    Supercritical fluid extraction is an interesting alternative for the fractionation of essential oils, in order to obtain concentrates or compounds of interest. This technique requires information about the distribution of the components of the mixture between the phases present at different conditions of pressure, temperature and composition. In this work equilibrium information of three bioactive essential oils (Salvia officinalis, Mentha piperita and Tagetes minuta oil) with near-critical and supercritical carbon dioxide is measured using a dynamic apparatus in the range of 313-323 K and 60-120 bar. The distribution of monoterpenes, oxygenated terpenes and sesquiterpenes in the extract phase is determined by gas chromatography in order to explore the best operating conditions for the separation of the fractions or compounds with higher biocidal activity. Predictive calculations are performed using the group contribution equation of state (GC-EOS) and compared with the experimental data. © 2011 Elsevier B.V. All rights reserved.Fil: Gañan, Nicolas Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin

    Supercritical carbon dioxide fractionation of T. minuta and S. officinalis essential oils: Experiments and process analysis

    No full text
    Essential oils are an important source of compounds with different degree of biocidal activity against microorganisms, insects, weeds and other pathogens. They have potential application in pharmaceutical, cosmetic and food industry, as well as for agriculture and crop protection. Supercritical fluid fractionation is an interesting technology for the selective removal of monoterpenes (MT) and the purification or enrichment of the more bioactive oxygenated terpenes (OT), resulting in more effective, stable and water soluble products. In this work, the fractionation of Tagetes minuta and Salvia officinalis essential oils with carbon dioxide is experimentally studied in a semicontinuous apparatus at 313 K and 80 bar. Successive extracts are collected and the composition determined by gas chromatography. Process behavior is modeled with the group contribution equation of state (GC-EOS), showing a good agreement between model predictions and experimental results. The GC-EOS model is applied to the simulation and analysis of two continuous fractionation schemes: a simple countercurrent column and a countercurrent column with external reflux. The influence of operation variables (temperature, pressure, solvent-to-feed ratio, thermal gradient, reflux ratio) is studied in order to maximize OT concentration and recovery in the raffinate and to minimize carbon dioxide consumption. Experimental and simulation results are discussed in terms of the relative volatilities between MT and OT fractions. Particularly in the case of S. officinalis, the presence of several OT of intermediate volatility and a significant amount of higher molecular weight sesquiterpenes (ST) limits the separation performance, even when external reflux is applied.Fil: Gañan, Nicolas Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentin

    Phase Equilibrium Engineering

    No full text
    It is with pleasure that I introduce the third volume in the Elsevier Book Series on Supercritical Fluid Science and Technology, Phase Equilibrium Engineering, which has been authored by Drs. Esteban Brignole and Selva Pereda from Universidad National del Sur, Argentina, with one chapter also contributed by Drs. Martin Cismondi and Marcelo S. Zabaloy from Universidad National de Co´rdoba and Universidad National del Sur, Argentina, respectively. They are all well-recognized names in the supercritical fluids and phase equilibria community. The book reflects and benefits from their many years of accumulated knowledge and practical expertise. Phase equilibrium is at the heart of chemical processes, and phase equilibrium at high pressures is a central theme in any application involving supercritical fluids. The topic becomes even more relevant when systems under consideration involve chemical transformations along a reaction coordinate which continually alter the compositional make up and thereby alter the phase equilibrium conditions. This book starts out with a clear statement of the significance of phase equilibrium in process development where there is a critical need to fill the gap between reaction and separation stages by designing and controlling the phase conditions that are essential for the success of the process. The book emphasizes the importance and the need for effective information flow along the pathways connecting the chemical plant or process to the laboratory, to the thermodynamics and phase equilibria, and to modeling and simulations. This four-node grid and their interplay form the essence of Phase Equilibrium Engineering. To provide a pedagogical development of the relevant engineering concepts, the authors start in Chapter 2 with a brief review of intermolecular forces (attractive and repulsive) and molecular interactions (dispersive, polar, electrostatic, induced dipole) that are important in phase equilibria and separation processes. Chapter 3 provides the background on thermodynamics of phase equilibrium and reviews the phase diagrams for pure substances and binary fluid mixtures within the framework of the van Konynenburg and Scott classification of the different types of phase behavior. The authors provide a clear and elegant graphical description of the changes in the binary mixture phase diagrams and the behavior of the critical lines from Type I to Type VI with changes in the size of the molecules and the nature of the molecular interactions and the energy asymmetries encountered. This chapter further provides a classification for ternary mixture phase diagrams that are based on the partial miscibility in one, two, or three of the binary pairs, which are graphically described in Gibb’s triangles. Multicomponent systems are also discussed in terms of pseudocomponents that are used to represent similar molecules. Chapter 4 is devoted to thermodynamic models and provides guidelines for selecting the appropriate model from among the various options, ranging from cubic equations of state to SAFT (Statistical Associating Fluid Theory) for different scenarios which are accomplished by using real case studies for separations of different levels of complexity. A comprehensive treatment of a methodology for general phase equilibrium calculations and generation of phase diagrams is provided in Chapter 5. Chapter 6 shifts the focus to engineering and provides a practical perspective on how the fundamental thermodynamics and phase equilibrium calculations and predictions are used in addressing complex separation processes using several case studies such as the supercritical biodiesel production process. These are continued in Chapter 7 by demonstrating how phase equilibrium engineering comes into play in distillation processes by an elegant description that makes the connections to the Type I to Type VI phase descriptions. The ethylene plant recovery section is used as a case study. In Chapter 8, discussions are extended to azeotropic mixtures and to the synthesis of solvents by computer-aided molecular design (MOLDES) to break up the azeotropes. As case studies, solvent design for recovery of aromatic fractions of reforming naphtha and high-pressure azeotropic separation of ethaneþCO2 mixtures by extractive distillation using n-butane as solvent are presented. Chapter 9 is devoted to green processes and high-pressure supercritical fluid solvents. Solvent tuning for systems displaying Type V (propaneþvegetable oil) and Type III (carbon dioxideþnatural oil) phase behavior are discussed in detail. Chapter 10 continues the discussions on the use of supercritical fluids in high-pressure fractionation and extraction of natural oils using orange oil deterpenation as a case study. Chapter 11 is devoted to reactive systems and supercritical reactors, and the phase behavior of reactive mixtures and solvents. Solvent selection strategies are discussed according to the reaction pathway using case studies such as selective hydrogenation of fatty acid methyl esters or hydrogenation of vegetable oils. Feasible or unfeasible operational regions are discussed in terms of the prevailing phase diagrams. Finally, Chapter 12 discusses how phase equilibrium engineering is used in the conceptual process design using production of biodiesel via transesterification of vegetable oil with methanol and alcohol extraction and dehydration as examples. I trust you will find this volume with its application-oriented engineering approach to be of great value and interest.Fil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin

    Revisiting the extraction and dehydration of ethanol by the hot propane process

    No full text
    Conventional liquid extraction is not a suitable separation method for the recovery and dehydration of ethanol and other light alcohols from aqueous solutions. Condensed non-polar gases like propane and CO2 looked promising as potential solvents. The favorable effect of temperature on the alcohol distribution coefficient of condensed propane led to the development of the hot propane process (HPP) for extraction and dehydration of alcohols. The dehydration of the alcohols took place in the solvent recovery column, thanks to the water entrainment effect of propane. Earlier pilot plant studies confirmed the process feasibility. In the present work, we design mixtures of propane + CO2 and phase conditions that fulfill the key properties of the HPP: (1) good alcohol distribution coefficient in the high-pressure extractor and (2) adequate water entrainment effect in the solvent recovery column.Fil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin

    Molecular Design of Solvents: An Efficient Search Algorithm for Branched Molecules

    Get PDF
    A fast generation and test algorithm is applied within a new approach for designing branched molecules with physical properties and molecular constraints. Computer-aided product design requires the generation of feasible compounds and the prediction of mixture and pure-component properties by group contribution methods. A desirable property of the molecular design procedure is the chemical stability/feasibility of the generated chemical structures. On the basis of the electronegativity of the group attachments, a new characterization of group combination properties and the corresponding feasibility criteria for computer-aided generation of branched structures are presented. A synthesis procedure and a strategy for reducing the size of the combinatorial synthesis problem are discussed. Finally, the corresponding step-by-step algorithm is described.Fil: Cismondi Duarte, MartĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentin

    Modeling and optimization of supercritical fluid processes

    No full text
    In this work, we discuss recent advances on thermodynamic modeling, process simulation and optimization of supercritical extraction and fractionation processes. The increasing availability of experimental data, as well as the need for estimation of economical viability, has encouraged the development of supercritical processes computer models. This review will discuss main approaches on phase equilibrium thermodynamic modeling of high-pressure processes, as well as process simulation. In this case, two main supercritical processes are considered: extraction of valuable products from solids and countercurrent fluid–fluid extraction and fractionation. In the latter process, again two main approaches are considered: rigorous models based on equilibrium stages and mass transfer models in packed columns. Finally, optimization procedures will be reviewed, both based on rigorous models and on experimental data.Fil: Díaz, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin

    Flexibility study on a dual mode natural gas plant in operation

    No full text
    This work addresses a flexibility study on a natural gas processing plant through the integration of a process simulator to a "worst case" flexibility strategy. The plant has a gas subcooled turboexpansion design, which is suitable for working in dual operation mode; i.e., in either ethane production or ethane rejection mode. The selected uncertain parameters (feed flowrate, condensable hydrocarbons content, carbon dioxide content, and ambient temperature) have great impact on process operating conditions. The use of the worse case algorithm with the KS overestimation function for inequality constraints has also been explored to improve computational time, and numerical results are compared for both solution strategies. Results show, in terms of both robustness and speed of computation, that this approach can be a useful tool to complement operational analysis of large processing units, commonly performed by simulation and "what if" studies.Fil: DĂ­az, MarĂ­a Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentin

    Fundamentals of supercritical fluid technology

    No full text
    This chapter deals with fundamentals of supercritical fluid extraction. Considering first the typical phase diagrams of high pressure systems. Thereafter the application of supercritical fluids to separations is illustrated with alcohol extraction and dehydration with hot propane, extraction of vegetable oils with non flammable solvents and fractionation of fish oils and essential oils with carbon dioxide. Also the removal of chemicals using supercritical fluids is considered. Finally the subject of phase equilibrium engineering of supercritical reactors is developed.Fil: Pereda, Selva. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Bottini, Susana Beatriz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentin
    corecore