40 research outputs found

    Microswimmers with heat delivery capacity for 3D cell spheroid penetration

    Get PDF
    Micro- and nanoswimmers are a fast emerging concept that changes how colloidal and biological systems interact. They can support drug delivery vehicles, assist in crossing biological barriers, or improve diagnostics. We report microswimmers that employ collagen, a major extracellular matrix (ECM) constituent, as fuel and that have the ability to deliver heat via incorporated magnetic nanoparticles when exposed to an alternating magnetic field (AMF). Their assembly and heating properties are outlined followed by the assessment of their calcium-triggered mobility in aqueous solution and collagen gels. It is illustrated that the swimmers in collagen gel in the presence of a steep calcium gradient exhibit fast and directed mobility. The experimental data are supported with theoretical considerations. Finally, the successful penetration of the swimmers into 3D cell spheroids is shown, and upon exposure to an AMF, the cell viability is impaired due to the locally delivered heat. This report illustrates an opportunity to employ swimmers to enhance tissue penetration for cargo delivery via controlled interaction with the ECM.Xunta de Galicia | Ref. ED431C 2016-034Ministerio de EconomĂ­a y Competitividad | Ref. CTM2014-58481-RXunta de Galicia | Ref. 2017 ED481AUniversidade de Vig

    Astrocytes in paper chips and their interaction with hybrid vesicles

    Get PDF
    © 2022 The Authors. Advanced Biology published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.The role of astrocytes in brain function has received increased attention lately due to their critical role in brain development and function under physiological and pathophysiological conditions. However, the biological evaluation of soft material nanoparticles in astrocytes remains unexplored. Here, the interaction of crosslinked hybrid vesicles (HVs) and either C8-D1A astrocytes or primary astrocytes cultured in polystyrene tissue culture or floatable paper-based chips is investigated. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) (P1) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine lipids are used for the assembly of HVs with crosslinked membranes. The assemblies show no short-term toxicity towards the C8-D1A astrocytes and the primary astrocytes, and both cell types internalize the HVs when cultured in 2D cell culture. Further, it is demonstrated that both the C8-D1A astrocytes and the primary astrocytes could mature in paper-based chips with preserved calcium signaling and glial fibrillary acidic protein expression. Last, it is confirmed that both types of astrocytes could internalize the HVs when cultured in paper-based chips. These findings lay out a fundamental understanding of the interaction between soft material nanoparticles and astrocytes, even when primary astrocytes are cultured in paper-based chips offering a 3D environment.This project was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 818890), the Lundbeck Foundation (R346-2020-1617), and the Carlsberg Foundation (CF 20–0418). The HRM Queen Margrethe II's travel grant (C.A.M.) is acknowledged for support. Tinfo:eu-repo/semantics/publishedVersio

    Disintegrating polymer multilayers to jump-start colloidal micromotors

    No full text
    Colloidal systems with autonomous mobility are attractive alternatives to static particles for diverse applications. We present a complementary approach using pH-triggered disintegrating polymer multilayers for self-propulsion of swimmers. It is illustrated both experimentally and theoretically that homogenously coated swimmers exhibit higher velocity in comparison to their Janus-shaped counterparts. These swimmers show directional and random motion in microfluidic channels with a steep and shallow pH gradient, respectively. Further, a higher number of deposited polymer multilayers, steeper pH gradients and lower mass of the swimmers result in higher self-propulsion velocities. This new self-propulsion mechanism opens up unique opportunities to design, for instance, fast and yet biocompatible swimmers using the diverse tools of polymer chemistry to custom-synthesise the polymeric building blocks to assemble multilayers.</p

    Locomotion of micromotors due to liposome disintegration

    No full text
    Synthetic micromotors are evaluated extensively in a range of biomedical, microscale transport, and environmental applications. Fundamental insight into micromotors that exhibit locomotion due to triggered disintegration of their associated liposomes is provided. Directed self-propulsion is observed when the lipid vesicles are solubilized using Triton X-100 (TX) and bile at sufficiently high concentrations. Directional motion, initiated by a propagating TX or bile gradient, is found when using a sufficiently high concentration of solubilization agents. On the other hand, a low bile concentration results in short-term reverse directional motion. The experimental and theoretical considerations offer valid fundamental understanding to complement the list of explored locomotion mechanisms for micromotors

    Recent advances in nano- and micromotors

    No full text
    Nano- and micromotors are fascinating objects that can navigate in complex fluidic environments. Their active motion can be triggered by external power sources or they can exhibit self-propulsion using fuel extracted from their surroundings. The research field is rapidly evolving and has produced nano/micromotors of different geometrical designs, exploiting a variety of mechanisms of locomotion, being capable of achieving remarkable speeds in diverse environments ranging from simple aqueous solutions to complex media including cell cultures or animal tissue. This review aims to provide an overview of the recent developments with focus on predominantly experimental demonstrations of the various motor designs developed in the past 24 months. First, externally driven motors are discussed followed by considering fuel-driven approaches. Finally, a short future perspective is provided

    Real Time Analysis of Myogenesis in Behaving Myoblasts

    No full text
    Effective Tissue engineering ultimately depends on understanding the interplay between the proliferation and differentiation stages of development. One of the best systems to examine these processes is myogenesis. Activated myoblasts first undergo many rounds of cell division. Depending on the needs of the cells, myoblasts may next withdraw from the cell cycle to fuse to form myotubes. Division and fusion are differentially modulated by mechanical stimuli transmitted to the cell’s biosynthetic mechanisms via the actin-based cytoskeleton; Specifically cyclic stretch promotes proliferation and inhibits fusion. By inference, the nature of cell attachment to the substrate should also influence transition through myogenesis. We therefore investigated the effect of the extracellular matrix on behaving cells undergoing either cytokinesis or fusion using atomic force microscopy (AFM) as well as confocal laser scanning microscopy (CLSM) in fluorescent mode
    corecore