13 research outputs found

    Debio-025 inhibits HIV-1 by interfering with an early event in the replication cycle

    No full text
    Cyclophilin A is a peptidyl-propyl isomerase that binds the capsid (p24) protein of HIV-1 and facilitates replication. We report a cyclophilin inhibitor, a non-immunosuppressive cyclosporine analogue, Debio-025, that is about 15-times more potent than cyclosporine A and less toxic resulting in a selectivity index of more than 300. It was equally active against virus strains that were resistant toward inhibitors of the viral entry, fusion, or reverse transcription while it was not inhibitory to HIV-2 or SIV(MAC). Mechanism of action studies demonstrate that Debio-025 inhibits the HIV-1 replication by interfering with an early stage of the viral replication cycle. Indeed, addition of Debio-025 could be postponed for 2h before loosing its antiviral activity. The compound proved inactive against mutant viruses that are independent of cyclophilin A binding suggesting Debio-025 targets the cyclophilin A-capsid interaction.status: publishe

    Correlation of Naturally Occurring HIV-1 Resistance to DEB025 with Capsid Amino Acid Polymorphisms

    Get PDF
    DEB025 (alisporivir) is a synthetic cyclosporine with inhibitory activity against human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV). It binds to cyclophilin A (CypA) and blocks essential functions of CypA in the viral replication cycles of both viruses. DEB025 inhibits clinical HIV-1 isolates in vitro and decreases HIV-1 virus load in the majority of patients. HIV-1 isolates being naturally resistant to DEB025 have been detected in vitro and in nonresponder patients. By sequence analysis of their capsid protein (CA) region, two amino acid polymorphisms that correlated with DEB025 resistance were identified: H87Q and I91N, both located in the CypA-binding loop of the CA protein of HIV-1. The H87Q change was by far more abundant than I91N. Additional polymorphisms in the CypA-binding loop (positions 86, 91 and 96), as well as in the N-terminal loop of CA were detected in resistant isolates and are assumed to contribute to the degree of resistance. These amino acid changes may modulate the conformation of the CypA-binding loop of CA in such a way that binding and/or isomerase function of CypA are no longer necessary for virus replication. The resistant HIV-1 isolates thus are CypA-independent

    The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro

    No full text
    Cyclosporin A (CsA) inhibits the in vitro replication of HCV subgenomic replicons. We here report on the potent anti-HCV activity of the non-immunosuppressive cyclosporin DEBIO-025. The 50% effective concentration for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by DEBIO-025 was 0.27 +/- 0.03 microg/mL and for CsA 2.8 +/- 0.4 microg/mL. The concentration that reduced the growth of exponentially proliferating Huh 5-2 cells by 50% was greater than 27 microg/mL for DEBIO-025 and 12 +/- 6 microg/mL for CsA, resulting in a selectivity index of approximately 900 for DEBIO-025 and 40 for CsA. The superior activity of DEBIO-025, as compared with CsA, was corroborated by monitoring HCV RNA levels in Huh 5-2, two other HCV subgenomic replicon-containing cell lines, and by monitoring the luciferase signal and viral antigen production in hepatoma cells that had been infected with an infectious full-length chimeric HCV construct. The combination of interferon alpha 2a with either CsA or DEBIO-025 resulted in an additive to slightly synergistic antiviral activity. DEBIO-025, at concentrations of 0.5 and 1 microg/mL, was able to clear cells from their HCV replicon within three to four passages, whereas treatment with CsA at the same concentrations for seven consecutive passages did not result in clearance of the HCV replicon. In conclusion, DEBIO-025, a compound that is also endowed with potent anti-HIV activity and is well tolerated in animals and humans, may form an attractive new option for the therapy of HCV infections, particularly in HCV/HIV co-infected patients.status: publishe
    corecore