16 research outputs found

    Method desription of the assessment of lakes and reservoirs with Phytoplankton and the Phyto-Seeindex in Germany. User handbook.

    Get PDF
    Die vorliegende Verfahrensbeschreibung enthält alle Änderungen, die mit dem LAWA-Expertenkreis für Seen bis Dezember 2016 abgestimmt wurden und folgende Überarbeitungsbereiche betreffen: 1) Es erfolgte eine erhebliche Verfahrenserweiterung für Seen im Mittelgebirge sowie für künstliche und stark veränderte Seen (AWB und HMWB), worunter unter anderem die Talsperren und die Baggerseen fallen. Nach einem ersten Verfahrensentwurf (Hoehn et al. 2009) wurden die Bewertungsgrenzen sowie die Seetypologie nach den Ergebnissen eines Praxistestes der Bundesländer stark überarbeitet (Riedmüller & Hoehn 2011). 2a) Es wurden die Grenzwerte für die Kenngröße "Biomasse" an die Grenzwerte für die Trophiestufen des neuen Trophie-Index nach LAWA (2014) angepasst. 2b) Wie im Trophie-Index nach LAWA wurden alle Saisonmittel im PSI auf ein direktes Mittel aus den Termindaten umgestellt und nicht mehr wie bisher über den Umweg von Monatsmitteln. Dies betrifft auch den PTSI-Jahreswert. 3) Für die Tieflandseen wurden alle Bewertungsroutinen umfassend überarbeitet, die auf Kenngrößen der Algenklassen basieren. Dies erfolgte nach Überprüfung mit einem seit 2006 stark erweiterten Datensatz. 5) Für den Sondertyp der sauren Tagebauseen wurde ein Biodiversitäts-Index (Leßmann & Nixdorf 2009) als neue Kenngröße im Phyto-See-Index aufgenommen. 6) In dem neu entwickelten PhytoLoss-Verfahren werden automatisiert Indices für die Grazing-Effektstärke aus den gleichzeitig zum Phytoplankton ermittelten Zooplankton-Daten errechnet, wodurch eine erweiterte Interpretation des Phyto-See-Index und des Nahrungsnetzes erfolgt und Hinweise auf Handlungsoptionen für die Maßnahmenplanung gegeben werden. 7) Zur Qualitätssicherung des Untersuchungsverfahrens "Phytoplankton zur Bestimmung des Phyto-See-Index" wurde ein QS-Handbuch erarbeitet (Mischke 2015) 8) Die vormals zusammengefassten Seetypen 1, 2 und 3 der Alpen und Voralpen wurden als unabhängige Gewässertypen mit jeweils eigener Referenztrophie unterschieden (LAWA O 7.16). Es wurde eine Dokumentation erstellt, die die Gleichwertigkeit des überarbeiteten Phyto-See-Index zu den Ergebnissen der Europäischen Interkalibrierung darstellt (LAWA Projekt O 2.15; Riedmüller et al. 2016).In accordance with the European Water Framework Directive (EU-WRRL, 2000, EU 2008), the sensitivity of phytoplankton to environmental pressures of eutrophication is used to assess the ecological status of German lakes. In Germany the Phyto-See-Index (PSI) has been used since 2008. The European Commission has published the agreed classification systems of the member states – including the Phyto-See-Index - as the result of the intercalibration process in the Official Journal of the European Union (Europäische Kommission 2008, 2013). Since then, the Phyto-See-Index has been further developed (for details, see Annex III) with a considerable expansion for lakes in the German central highlands as well as for artificial and heavily modified lakes (AWB und HMWB), groups which include reservoirs and flooded quarry/gravel pits. For the special case of strongly acidic mining lakes, a biodiversity index (Leßmann & Nixdorf 2009) was adopted as a new component of the Phyto-See-Index. The Phyto-See-Index compares the current ecological status to a predetermined reference status, which is harmonised for ecoregions Europe-wide (Poikāne et al. 2010, 2014; Järvinen et al. 2013). Further required components of the Phyto-See-Index are: I) German lake sampling standard (Nixdorf et al. 2008, 2010), II) Profile documents describing German lake types and in the cover letter instructions for assigning lake types (Riedmüller et al. 2013b), III) German taxa list for phytoplankton (HTL; Mischke & Kusber Mai 2009) and IV) Assessment tool PhytoSee for the calculation of the Phyto-See-Index (Chapter 4). Please note that an update for the German coding list will be available at end of the year 2017, including currently accepted names also for indicator taxa

    Was wäre wenn: Phytoplankton-Bewertung nach EU-WRRL und Klimawandelszenarios von Genehmigungsverfahren

    Get PDF
    Im Zentrum dieser Arbeit stehen Bioindikatoren, die im begründeten Verdacht stehen, gleichzeitig auf die anthropogenen Belastungen „Eutrophierung“ und „Klimaerwärmung“ zu reagieren. Cyanobacteria werden als Bioindikatoren mit 42 Arten und mittels ihres gesamten Biomasseanteils am Phytoplankton unter weiteren Kenngrößen im neuen deutschen Seenbewertungssystem, dem Phyto-See-Index (PSI) zur Umsetzung der Wasserrahmenrichtlinie (WRRL) genutzt (Mischke et al. 2008). Die meisten Vertreter der Cyanobacteria profitieren in ihrem Wachstum sowohl von einer Erhöhung der Trophie, als auch von erhöhten Wassertemperaturen. Für die Region Brandenburg wird nach Szenario B des PIC Potsdam mit einem Anstieg der Lufttemperatur um +1,5°C bis 2050 gerechnet (Jacob &Gerstengarbe. 2005). Dies hat eine Verlängerung der Schichtungsperiode (Adrian et al. 1993, Kirillin et al. 2008) in dimiktischen Seen, eine Annäherung der Wassertemperatur an die Optima vieler Arten und eine erhöhte hypolimnische P-Rücklösung (Adrian et al. 1993) zur Folge, was insgesamt einen höheren Trophiestatus der Seen einhergehend mit höheren Phytoplanktonbiomassen erwartet lässt. Es wird postuliert, dass die globale Erwärmung zur Verschiebung der Referenzzönosen („composition metrics“ wie PTSI und Algenklassen-Metrik) und der Biomasseausprägung („biomass metrics“) führt und damit die Bewertungsmatrix angepasst werden müsste. Um den Effekt der prognostizierten Erhöhung von Cyanobacteria auf die Bewertung mittels Phyto-See-Index zu dokumentieren, wird in diesem Beitrag der Biomasseanteil dieser Gruppe in einem Szenario anhand realer Seendaten künstlich verdoppelt und der Bewertung „ohne potentiellen Klimaeinfluss“ gegenübergestellt. Ein weiteres Phänomen aufgrund der Klimaerwärmung wird anhand eines Populationsmodells, welches zur Berücksichtigung der Überwinterung mittels Dauerzellen (Akineten) für eine Art der Nostocales (Cyanobacteria) entwickelt wurde, vorausgesagt (Wiedner et al. 2007): Es besagt, dass nostocale Arten mit einem Lebenszyklus bei Klimaerwärmung aufgrund der früheren Keimung höhere sommerliche Biomassen aufbauen werden. Um den Effekt einer Erhöhung der Lufttemperatur im vorausgehenden Winter oder Frühjahr auf die Nostocales in Freilanddaten zu beobachten, werden Langzeitdaten von 35 Seen mit kalten und warmen Jahren (-zeiten) ausgewertet

    Stickstofflimitation in Binnengewässern - Ist Stickstoffreduktion ökologisch sinnvoll und wirtschaftlich vertretbar? Abschlussbericht NITROLIMIT I überarbeitete Fassung

    Get PDF
    In NITROLIMT stand an erster Stelle die Frage: Ist N-Reduktion ökologisch sinnvoll? Die Auswertung der Seendatenbank hat gezeigt, dass Stickstoff weit häufiger die Biomasse des Phytoplanktons begrenzt und damit die Gewässergüte bestimmt als bisher angenommen. In flachen durchmischten Seen und Flussseen tritt N-Limitation sogar häufiger auf als P-Limitation, wobei meist ein Übergang von P-Limitation im Frühjahr zu N-Limitation im Sommer stattfindet. Diese Befunde wurden durch Gewässermonitoring und Bioassays in vier Modellgewässern bestätigt. Demnach ist nicht nur P-, sondern auch N-Reduktion ökologisch sinnvoll. Daher wurden seentypspezifische Zielwerte für TN- und TP-Konzentrationen zur Erreichung eines guten ökologischen Zustandes ermittelt. „Ist-“ und „Sollzustand“ der so ermittelten TN- bzw. TP-Konzentrationen differieren stark. Der Zusammenhang zwischen TN und Biomasse des Phytoplanktons ist aufgrund der kleineren Datenmenge für TN, uneinheitlicher N-Analytik und unberücksichtigter gelöster organischer N-Verbindungen (DON) sehr variabel. Eine Validierung der TN-Zielwerte basierend auf einer verbesserten Datengrund-lage wird daher in NITROLIMIT II angestrebt. Zudem galt es zu beantworten: Ist Stickstoffreduktion wirtschaftlich vertretbar? Ein Maßnahmenkatalog zur Nährstoffreduktion (N und P) für die Bereiche Landwirtschaft und urbane Quellen wurde erstellt. Darin sind Informationen zu Wirkungen und Kosten der einzelnen Maßnahmen zusammengestellt. Zudem wurden in einer Ökobilanz nichtmonetäre ökologische Auswirkungen verschiedener Varianten einer N-Elimination auf Großklärwerken an einem Modellklärwerk untersucht. Hier zeigten sich signifikante Unterschiede in Wirksamkeit und Energieeffizienz zwischen den verschiedenen Maßnahmen, die bei der weiteren Maßnahmenplanung für Großklärwerke berücksichtigt werden sollten. Für die ökobilanzielle Bewertung von Maßnahmen im urbanen Bereich fehlt noch die Untersuchung von Maßnahmen der Regenwasserbewirtschaftung. Vorläufiges Fazit Die bisherigen Ergebnisse zeigen, dass Stickstoffreduktion überwiegend ökologisch sinnvoll und für einige der analysierten Szenarien wirtschaftlich vertretbar ist. Daher wird empfohlen, zur Verbesserung der Gewässergüte nicht nur den Eintrag von Phosphor, sondern auch den von Stickstoff zu reduzieren. Entsprechende regionale Konzepte zur Nährstoffreduktion sollten für kleine Modelleinzugsgebiete erstellt und umgesetzt werden. Durch wissenschaftliche Begleituntersuchungen sollten dabei der Erfolg von einzelnen Maßnahmen und Maßnahmenkombinationen geprüft und Schlüsselprozesse des N- und P-Umsatzes (N2-Fixierung, Denitrifikation und P-Freisetzung) weiter aufgeklärt werden

    Nitrogen fixation in two polymictic lakes

    Get PDF
    The ability to fix molecular nitrogen is considered to be a competitive advantage of Nostocales to overcome periods of nitrogen shortage but it is unclear to what extend these cyanobacteria import nitrogen into freshwaters and if they are able to compensate the efforts of reducing anthropogenic nitrogen input. We studied nitrogen fixation, cyanobacterial biovolume and species composition and abiotic parameters in two polymictic lakes (Germany) over three years. Although Nostocales were present from April to November N2-fixation was found only from June/July to September. In the summer months, it amounted up to 40 mgN m-²d-¹ or up to 500 mgN m-²d-¹ resulting in rather low annual N-inputs between 0.1 and 8 gN m-²a-¹. We found a high variation in N2-fixation rates between the two lakes and the years, which could neither be explained by total Nostocales biovolume nor heterocyte numbers. N2-fixation rates measured in the field will be analyzed on Nostocales species level, be compared to those of laboratory cultures and be discussed in the context of possible phosphorus or light limitation of Nostocales

    Handbuch für die Seenbewertung mittels Plankton–Phyto-See-Index (Teil A) und PhytoLoss - Modul Zooplankton (Teil B)

    Get PDF
    Die vorliegende Verfahrensbeschreibung enthält alle Änderungen, die mit dem LAWA-Expertenkreis für Seen bis Februar 2015 abgestimmt wurden und folgende Überarbeitungsbereiche betreffen: 1) Es erfolgte eine erhebliche Verfahrenserweiterung für Seen im Mittelgebirge sowie für künstliche und stark veränderte Seen (AWB und HMWB), worunter unter anderem die Talsperren und die Baggerseen fallen. Nach einem ersten Verfahrensentwurf (Hoehn et al. 2009) wurden die Bewertungsgrenzen sowie die Seetypologie nach den Ergebnissen eines Praxistestes der Bundesländer stark überarbeitet (Riedmüller & Hoehn 2011). 2 a) Es wurden die Grenzwerte für die Kenngröße „Biomasse“ an die Grenzwerte für die Trophiestufen des neuen Trophie-Index nach LAWA (2013; Riedmüller et al. 2013b) angepasst. 2 b) Wie im Trophie-Index nach LAWA wurden alle Saisonmittel im PSI auf ein direktes Mittel aus den Termindaten umgestellt, und nicht mehr wie bisher über den Umweg von Monatsmitteln. Dies betrifft auch den PTSI-Jahreswert. 3) Für die Tieflandseen wurden alle Bewertungsroutinen umfassend überarbeitet, die auf Kenngrößen der Algenklassen basieren. Dies erfolgte nach Überprüfung mit einem seit 2006 stark erweiterten Datensatz. 4) Für den Sondertyp der stark sauren Tagebauseen wurde ein Biodiversitäts-Index (Leßmann & Nixdorf 2009) als neue Kenngröße im Phyto-See-Index aufgenommen. 5) In dem neu entwickelten PhytoLoss-Verfahren werden automatisiert Indices für die Grazing-Effektstärke aus den gleichzeitig zum Phytoplankton ermittelten Zooplankton-Daten errechnet, wodurch eine erweiterte Interpretation des Phyto-See-Index und des Nahrungsnetzes erfolgt, und Hinweise auf Handlungsoptionen für die Maßnahmenplanung gegeben werden. 6) Zur Qualitätssicherung des Untersuchungsverfahrens „Phytoplankton zur Bestimmung des Phyto-See-Index“ wurde ein Handbuch erarbeitet (Kapitel 8)

    North German Lowland Lakes Miss Ecological Water Quality Standards—A Lake Type Specific Analysis

    No full text
    Despite great efforts in point source reductions due to improved wastewater treatment since 1990, more than 70% of the lakes in Germany have not yet achieved the “good ecological status” according to the European Water Framework Directive (WFD). To elicit lake type-specific causes of this failure, we firstly analyzed the ecological status of 183 lakes in NE Germany (Federal State of Brandenburg), as reported to the European Commission in 2015. Secondly, long-term data of two typical lakes (a very shallow polymictic lake with a large and a deep stratified lake with a small catchment area in relation to lake volume) and nutrient load from the common catchment were investigated. About 64%–83% of stratified and even 96% of polymictic shallow lakes in Brandenburg currently fail the WFD aims. Excessive nutrient emissions from agriculture were identified as the main cause of this failure. While stratified deep lakes with small catchments have the best chances of recovery, the deficits in catchment management are amplified downstream in lake chains, so that especially shallow lakes in a large catchment are unlikely to reach good ecological conditions. If the objectives of the WFD are not questioned, agricultural practices and approaches in land use have to be fundamentally improved

    Effects of winter temperature on phytoplankton development in acidic mining lakes

    No full text
    Mining lakes are within the focus of limnological and public interest in many countries because they have unusal mineral content and can comprise a great portion of standing waters in certain areas. Due to pyrite oxidation, many mining lakes are extremely acidic and therefore differ considerably from natural circumneutral lakes in their chemical and biological characteristics (GELLER et al. 1998, LESSMANN & NIXDORF 2000). In central Europe deep lakes are usually regarded as dimictic. A presupposition for stable winter stagnation is the formation of ice cover, which depends on the duration of the frost period. Within the last ten years central Europe has seen several mild winters that inhibited the formation of a long-lasting ice cover and thus the occurrence of a stable winter stagnation. The importance of occurrence and duration of winter ice cover and winter stagnation for the phytoplankton development is shown by the example of Mining Lake (ML) Plessa 117 of the Lusatian lignite mining district (Germany). This study compares the relatively mild winter 2001/2003 with the strong winter 2002/2003 and analyzes phytoplankton development in winters of 1997 to 2000
    corecore