29 research outputs found

    Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    Get PDF
    Summary Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging

    STAT5-and hypoxia-dependent upregulation of AXL

    Get PDF
    Internal tandem duplication in Fms-like tyrosine kinase 3 (FLT3-ITD) is the most frequent mutation observed in acute myeloid leukemia (AML) and correlates with poor prognosis. FLT3 tyrosine kinase inhibitors are promising for targeted therapy. Here, we investigated mechanisms dampening the response to the FLT3 inhibitor quizartinib, which is specific to the hematopoietic niche. Using AML primary samples and cell lines, we demonstrate that convergent signals from the hematopoietic microenvironment drive FLT3-ITD cell resistance to quizartinib through the expression and activation of the tyrosine kinase receptor AXL. Indeed, cytokines sustained phosphorylation of the transcription factor STAT5 in quizartinib-treated cells, which enhanced AXL expression by direct binding of a conserved motif in its genomic sequence. Likewise, hypoxia, another well-known hematopoietic niche hallmark, also enhanced AXL expression. Finally, in a xenograft mouse model, inhibition of AXL significantly increased the response of FLT3-ITD cells to quizartinib exclusively within a bone marrow environment. These data highlight a new bypass mechanism specific to the hematopoietic niche that hampers the response to quizartinib through combined upregulation of AXL activity. Targeting this signaling offers the prospect of a new therapy to eradicate resistant FLT3-ITD leukemic cells hidden within their specific microenvironment, thereby preventing relapses from FLT3-ITD clones

    Novel lentiviral vectors displaying "early acting cytokines" selectively promote survival and transduction of NOD/SCID repopulating human hematopoietic stem cells

    No full text
    A major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells, such as human CD34+ cells that reside into G0 phase of the cell cycle and that are highly enriched in hematopoietic stem cells. This hampers their application for gene therapy of hematopoietic cells. Here, we designed novel lentiviral vectors that overcome this restriction by displaying early-acting cytokines on their surface. Display of thrombopoietin, stem cell factor or both cytokines on LV surface allowed efficient gene delivery into quiescent cord blood CD34+ cells. Moreover, these surface-engineered LVs preferentially transduced and promoted survival of resting CD34+ cells rather than cycling cells. Finally, and most importantly, these novel LVs allowed superior gene transfer in the most immature CD34+ cells as compared to conventional LVs, even when the latter vectors were used to transduce cells in the presence of recombinant cytokines. This was demonstrated by their capacity to promote selective transduction of CD34+ cell in in vitro derived long-term culture initiating cell colonies (LTC-ICs) and of long-term NOD/ SCID repopulating cells (SRCs) in vivo

    Glycoprotein Ibalpha promoter drives megakaryocytic lineage-restricted expression after hematopoietic stem cell transduction using a self-inactivating lentiviral vector.

    No full text
    International audienceMegakaryocytic (MK) lineage is an attractive target for cell/gene therapy approaches, aiming at correcting platelet protein deficiencies. However, MK cells are short-lived cells, and their permanent modification requires modification of hematopoietic stem cells with an integrative vector such as a lentiviral vector. Glycoprotein (Gp) IIb promoter, the most studied among the MK regulatory sequences, is also active in stem cells. To strictly limit transgene expression to the MK lineage after transduction of human CD34(+) hematopoietic cells with a lentiviral vector, we looked for a promoter activated later during MK differentiation. Human cord blood, bone marrow, and peripheral-blood mobilized CD34(+) cells were transduced with a human immunodeficiency virus-derived self-inactivating lentiviral vector encoding the green fluorescent protein (GFP) under the transcriptional control of GpIbalpha, GpIIb, or EF1alpha gene regulatory sequences. Both GpIbalpha and GpIIb promoters restricted GFP expression (analyzed by flow cytometry and immunoelectron microscopy) in MK cells among the maturing progeny of transduced cells. However, only the GpIbalpha promoter was strictly MK-specific, whereas GpIIb promoter was leaky in immature progenitor cells not yet engaged in MK cell lineage differentiation. We thus demonstrate the pertinence of using a 328-base-pair fragment of the human GpIbalpha gene regulatory sequence, in the context of a lentiviral vector, to tightly restrict transgene expression to the MK lineage after transduction of human CD34(+) hematopoietic cells. Disclosure of potential conflicts of interest is found at the end of this article

    MeCP2 is involved in random mono-allelic expression for a subset of human autosomal genes

    No full text
    International audienceWidespread random monoallelic gene expression (RMAE) effects influence about 10% of human genes. However, the mechanisms by which RME of autosomal genes is established and those by which it is maintained both remain open questions. Because the choice of allelic expression is randomly performed cell-by-cell, the RMAE mechanism is not observable in non-clonal cell populations or in whole tissues. Several target genes of MeCP2, the gene involved in Rett syndrome (RTT), have been previously described as subject to RMAE, suggesting that MeCP2 may be involved in the establishment and/or maintenance of RME of autosomal genes. To improve our knowledge on this largely unknown phenomenon, and to study the role of MeCP2 in RMAE, we compared RMA gene expression profiles in clonal cell cultures expressing wild-type MeCP2 versus mutant MeCP2 from a RTT patient carrying a pathogenic non-sense variant. Our data clearly demonstrated that MeCP2 deficiency does not affect significantly allelic gene expression of X-linked genes, imprinted genes as well as the RMAE profile in the majority of genes. However, the functional deficiency in MeCP2 appeared to disrupt the mono-allelic or the bi-allelic expression of at least 49 genes allowing us to define a specific signature of MECP2 mutated clones

    Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers

    No full text
    International audienceSkeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium
    corecore