18 research outputs found

    Episomal replication timing of γ-herpesviruses in latently infected cells

    Get PDF
    AbstractThis study addresses the timing of gammaherpesviral episomal DNA replication with respect to the cell cycle. For the first time we analyzed a rhadinovirus, the prototype Herpesvirus saimiri (HVS), and compared it to the lymphocryptovirus Epstein–Barr virus (EBV). Newly synthesized DNA of latently infected B- or T-cells was first BrdU-labeled; then we sorted the cells corresponding to cell cycle phases G0/1, G2/M, and S (4 fractions S1–S4) and performed anti-BrdU chromatin immunoprecipitation. Next, DNA of different viral gene loci was quantitatively detected together with cellular control genes of known replication time. The sensitive technique is further enhanced by an internal coprecipitation standard for increased precision. Both gammaherpesviruses replicated very early in S-phase, together with cellular euchromatin. Our work suggests that early S-phase DNA replication is a general characteristic of episomal herpesviral genomes

    Actin-dependent activation of serum response factor in T cells by the viral oncoprotein tip

    Get PDF
    Serum response factor (SRF) acts as a multifunctional transcription factor regulated by mutually exclusive interactions with ternary complex factors (TCFs) or myocardin-related transcription factors (MRTFs). Binding of Rho- and actin-regulated MRTF:SRF complexes to target gene promoters requires an SRF-binding site only, whereas MAPK-regulated TCF:SRF complexes in addition rely on flanking sequences present in the serum response element (SRE). Here, we report on the activation of an SRE luciferase reporter by Tip, the viral oncoprotein essentially contributing to human T-cell transformation by Herpesvirus saimiri. SRE activation in Tip-expressing Jurkat T cells could not be attributed to triggering of the MAPK pathway. Therefore, we further analyzed the contribution of MRTF complexes. Indeed, Tip also activated a reporter construct responsive to MRTF:SRF. Activation of this reporter was abrogated by overexpression of a dominant negative mutant of the MRTF-family member MAL. Moreover, enrichment of monomeric actin suppressed the Tip-induced reporter activity. Further upstream, the Rho-family GTPase Rac, was found to be required for MRTF:SRF reporter activation by Tip. Initiation of this pathway was strictly dependent on Tip's ability to interact with Lck and on the activity of this Src-family kinase. Independent of Tip, T-cell stimulation orchestrates Src-family kinase, MAPK and actin pathways to induce SRF. These findings establish actin-regulated transcription in human T cells and suggest its role in viral oncogenesis

    Tyrosine Phosphorylation of the Tio Oncoprotein Is Essential for Transformation of Primary Human T Cells

    No full text
    Human T cells are transformed to antigen-independent permanent growth in vitro upon infection with herpesvirus saimiri subgroup C strains. The viral oncoproteins required for this process, StpC and Tip, could be replaced by Tio, the oncoprotein of herpesvirus ateles. Here we demonstrate that proliferation of lymphocytes transformed with Tio-recombinant herpesvirus saimiri required the activity of Src family kinases. Src kinases had previously been identified as interaction partners of Tio. This interaction was now shown to be independent of any of the four tyrosine residues of Tio but to be dependent on an SH3-binding motif. Mutations within this motif abrogated the transforming capabilities of Tio-recombinant herpesvirus saimiri. Furthermore, kinase interaction resulted in the phosphorylation of Tio on a single tyrosine residue at position 136. Mutation of this residue in the viral context revealed that this phosphorylation site, but none of the other tyrosine residues, was required for T-cell transformation. These data indicate that the interaction of Tio with a Src kinase is essential for both the initiation and the maintenance of T-cell transformation by recombinant herpesvirus saimiri. The requirement for the tyrosine phosphorylation site at position 136 suggests a role for Tio beyond simple deregulation of the kinase

    Herpesvirus Ateles Tio Can Replace Herpesvirus Saimiri StpC and Tip Oncoproteins in Growth Transformation of Monkey and Human T Cells

    No full text
    Herpesvirus saimiri group C strains are capable of transforming human and simian T-lymphocyte populations to permanent antigen-independent growth. Two viral oncoproteins, StpC and Tip, that are encoded by a single bicistronic mRNA, act in concert to mediate this phenotype. A closely related New World monkey herpesvirus, herpesvirus ateles, transcribes a single spliced mRNA at an equivalent genome locus. The encoded protein, Tio, has sequence homologies to both StpC and Tip. We inserted the tio sequence of herpesvirus ateles strain 73 into a recombinant herpesvirus saimiri C488 lacking its own stpC/tip oncogene. Simian as well as human T lymphocytes were growth transformed by the chimeric Tio-expressing viruses. Thus, a single herpesvirus protein appears to be responsible for the oncogenic effects of herpesvirus ateles

    Growth Transformation of Human T Cells by Herpesvirus Saimiri Requires Multiple Tip-Lck Interaction Motifs

    No full text
    Lymphoma induction and T-cell transformation by herpesvirus saimiri strain C488 depends on two viral oncoproteins, StpC and Tip. The major interaction partner of Tip is the protein tyrosine kinase Lck, a key regulator of T-cell activation. The Lck binding domain (LBD) of Tip comprises two interaction motifs, a proline-rich SH3 domain-binding sequence (SH3B) and a region with homology to the C terminus of Src family kinase domains (CSKH). In addition, biophysical binding analyses with purified Lck-SH2 domain suggest the phosphorylated tyrosine residue 127 of Tip (pY127) as a potential third Lck interaction site. Here, we addressed the relevance of the individual binding motifs, SH3B, CSKH, and pY127, for Tip-Lck interaction and for human T-cell transformation. Both motifs within the LBD displayed Lck binding activities and cooperated to achieve a highly efficient interaction, while pY127, the major tyrosine phosphorylation site of Tip, did not enhance Lck binding in T cells. Herpesvirus saimiri strain C488 recombinants lacking one or both LBD motifs of Tip lost their transforming potential on human cord blood lymphocytes. Recombinant virus expressing Tip with a mutation at position Y127 was still able to transform human T lymphocytes but, in contrast to wild-type virus, was strictly dependent on exogenous interleukin-2. Thus, the strong Lck binding mediated by cooperation of both LBD motifs was essential for the transformation of human T cells by herpesvirus saimiri C488. The major tyrosine phosphorylation site Y127 of Tip was particularly required for transformation in the absence of exogenous interleukin-2, suggesting its involvement in cytokine signaling pathways
    corecore