227 research outputs found

    Smart actuation of liquid crystal elastomer elements: cross-link density-controlled response

    Get PDF
    Liquid crystalline elastomers (LCEs) exhibit some remarkable physical properties, such as the reversible large mechanical deformation induced by proper environmental stimuli of different nature, such as the thermal stimulus, allowing their use as soft actuators. The unique features displayed by LCE are originated from their anisotropic microstructure characterized by the preferential orientation of the mesogen molecules embedded in the polymer network. An open issue in the design of LCEs is how to control their actuation effectiveness: the amount of mesogens molecules, how they are linked to the network, the order degree, the cross-link density are some controllable parameters whose spatial distribution, however, in general cannot be tuned except the last one. In this paper, we develop a theoretical micromechanical-based framework to model and explore the effect of the network cross-link density on the mechanical actuation of elements made of liquid crystalline elastomer. In this context, the light-induced polymerization (photopolymerization) for obtaining the elastomers’ cross-linked network is of particular interest, being suitable for precisely tuning the cross-link density distribution within the material; this technology enables to obtain a molecular-scale architected LCEs, allowing the optimal design of the obtainable actuation. The possibility to properly set the cross-link density arrangement within the smart structural element (LCE microstructure design and optimization), represents an intriguing way to create molecular-scale engineered LCE elements having material microstructure encoded desired actuation capabilities

    Controlled morphing of architected liquid crystal elastomer elements: modeling and simulations  

    Get PDF
    Liquid crystal elastomers (LCE) are elastomeric materials possessing a network microstructure made of chains with a preferential orientation, induced by mesogen units embedded in the material prior to polymerization. This peculiarity can be harnessed to induce deformation of an LCE element by making its network switch from the preferentially oriented nematic state to the isotropic one, as occurs for instance by rising the temperature above a transition value characteristic of the material. This mechanism can be combined with an architected arrangement of LCE elements, whose nematic orientation and transition temperature are properly differentiated among the different zones constituting the element. In this way, interesting morphing capabilities can be obtained out of an architected elastomer made of LCE portions (ALCE), leading to a morphing structure whose deformation can be activated and precisely tuned by heating up or cooling down the material. In this research, we propose some simple architected LCE elements showing the capability of producing a variety of deformed shapes. A micromechanical theoretical model for LCE is firstly illustrated and several examples of morphing of architected LCE elements, whose mechanical response is obtained through finite element (FE) numerical analyses based on the proposed micromechanical model, are illustrated and critically discussed

    Mechanical behaviour of photopolymerized materials

    Get PDF
    The photopolymerization process used for the production of additively manufactured polymers employed in advanced applications, enables to obtain objects spanning a large dimensional scale thanks to the molecular size achievable by the solidification process. In fact, the photopolymerization is based on the physical-chemical network cross-linking mechanism taking place at the nanoscale. Since the starting raw material is a liquid resin that progressively becomes solid upon the irradiation by a suitable light source, the mechanical properties – and so the corresponding mechanical response of the final printed structural material – heavily depend on the degree and distribution of the polymerization induced in the material itself. In the present study, starting from the governing equations of the light-induced polymerization process, we determine the chain density formed within the solid domain. Then, the mechanical response of photopolymerized elements obtained with different photopolymerization parameters is investigated. Moreover, the microstructure optimization of polymeric elements in relation to the achievement of the desired mechanical response with the least energy spent in the polymer’s formation, is studied. Finally, some interesting considerations related to the modelling of the photopolymerization process are outlined

    Crack paths in soft thin sheets

    Get PDF
    Highly deformable materials (elastomers, gels, biological tissues, etc.) are ubiquitous in nature as well as in technology. The understanding of their flaw sensitivity is crucial to ensure a desired safety level. Fracture failure in soft materials usually occurs after the development of an uncommon crack path because of the non-classical near-tip stress field and the viscous effects. In a neo-Hookean material, the true opening stress singularity along the crack path (evaluated normal to the crack line) is of the order , while it is of the order ahead of the crack tip, promoting the appearance of a crack tip splitting leading to a tortuous crack. In the present paper, experimental tests concerning the fracture behavior of highly deformable thin sheets under tension are discussed, and the observed crack paths are interpreted according to the crack tip stress field arising for large deformations. The study reveals that higher strain rates facilitate the development of a simple Mode I crack path, while lower strain rates induce a mixed Mode in the first crack propagation stage, leading to the formation of new crack tips. The above described behavior seems to not be affected by the initial crack size

    A unified approach for static and dynamic fracture failure in solids and granular materials by a particle method

    Get PDF
    The material structure at the microscale reveals the particulate nature of solids. By exploiting the discrete aspect of materials, the so-called particle methods developed and applied to the simulation of solids and liquids have attracted the attention of several researchers in the field of computational mechanics. In the present paper, a particle method based on a suitable force potential is proposed to describe the nature and intensity of the forces existing between particles of either the same solid or different colliding solids. The formulation applies to problems involving both granular materials and solids interacting with granular materials. The above approach is applied to simulate different problems dealing with the 3D dynamic fracture and failure of solids

    Effect of fibre arrangement on the multiaxial fatigue of fibrous composites: a micromechanical computational model

    Get PDF
    Structural components made of fibre-reinforced materials are frequently used in engineering applications. Fibre-reinforced composites are multiphase materials, and complex mechanical phenomena take place at limit conditions but also during normal service situations, especially under fatigue loading, causing a progressive deterioration and damage. Under repeated loading, the degradation mainly occurs in the matrix material and at the fibre-matrix interface, and such a degradation has to be quantified for design structural assessment purposes. To this end, damage mechanics and fracture mechanics theories can be suitably applied to examine such a problem. Damage concepts can be applied to the matrix mechanical characteristics and, by adopting a 3-D mixed mode fracture description of the fibre-matrix detachment, fatigue fracture mechanics concepts can be used to determine the progressive fibre debonding responsible for the loss of load bearing capacity of the reinforcing phase. In the present paper, a micromechanical model is used to evaluate the unixial or multiaxial fatigue behaviour ofstructures with equi-oriented or randomly distributed fibres. The spatial fibre arrangement is taken into account through a statistical description of their orientation angles for which a Gaussian-like distribution is assumed, whereas the mechanical effect of the fibres on the composite is accounted for by a homogenization approach aimed at obtaining the macroscopic elastic constants of the material. The composite material behaves as an isotropic one for randomly distributed fibres, while it is transversally isotropic for unidirectional fibres. The fibre arrangement in the structural component influences the fatigue life with respect to the biaxiality ratio for multiaxial constant amplitude fatigue loading. One representative parametric example is discussed

    fracture toughness of highly deformable polymeric materials

    Get PDF
    Abstract: A fundamental requirement for safety design of structural components is flaw tolerance. In this field, the soft materials have a unique ability to bear external loads despite the presence of defects, due to their pronounced deformability. Unlike traditional materials, which have an enthalpic elasticity, the mechanical response of a polymer-based material is governed by the state of internal entropy of a molecular network which has a great ability to rearrange the material structure and shape so to minimize the local detrimental effect of flaws. For a correct estimation of the fracture toughness of these materials, a proper knowledge of this entropic effect is needed. In the present research, the mechanical behaviour up to failure of silicone-based cracked plates is examined by taking into account the time-dependent effects. Experimental and theoretical aspects are discussed in order to understand the defect tolerance of such materials

    Smart polymers for advanced applications: a mechanical perspective review

    Get PDF
    Responsive materials, as well as active structural systems, are nowadays widely used to develop unprecedented smart devices, sensors or actuators; their functionalities come from the ability of responding to environmental stimuli with a detectable reaction. Depending on the responsive material under study, the triggering stimuli can have a different nature, ranging from physical (temperature, light, electric or magnetic field, mechanical stress, ...), chemical (pH, ligands, …), or biological (enzymes, …) type. Such a responsiveness can be obtained by properly designing the meso- or macroscopic arrangement of the constitutive elements, as occurs in metamaterials, or can be obtained by using responsive materials per se, whose responsiveness comes from the chemistry underneath their microstructure. In fact, when the responsiveness at the molecular level is properly organized, the nanoscale response can be collectively detected at the macroscale, leading to a responsive material. In the present paper, we review the huge world of responsive polymers, by outlining the main features, characteristics and responsive mechanisms of smart polymers and by providing a mechanical modeling perspective, both at the molecular as well as at the continuum scale level. We aim at providing a comprehensive overview of the main features and modeling aspects of the most diffused smart polymers. The quantitative mechanical description of active materials plays a key role in their development and use, enabling the design of advanced devices as well as to engineer the materials’ microstructure according to the desired functionality

    a phase field approach for crack modelling of elastomers

    Get PDF
    Abstract The description of a problem related to an evolving interface or a strong discontinuity requires to solve partial differential equations on a moving domain, whose evolution is unknown. Standard computational methods tackle this class of problems by adapting the discretized domain to the evolving interface, and that creates severe difficulties especially when the interface undergoes topological changes. The problem becomes even more awkward when the involved domain changes such as in mechanical problems characterized by large deformations. In this context, the phase-field approach allows us to easily reformulate the problem through the use of a continuous field variable, identifying the evolving interface (i.e. the crack in fracture problems), without the need to update the domain discretization. According to the variational theory of fracture, the crack grows by following a path that ensures that the total energy of the system is always minimized. In the present paper, we take advantage of such an approach for the description of fracture in highly deformable materials, such as the so-called elastomers. Starting from a statistical physics-based micromechanical model which employs the distribution function of the polymer's chains, we develop herein a phase-field approach to study the fracture occurring in this class of materials undergoing large deformations. Such a phase-field approach is finally applied to the solution of crack problems in elastomers

    Crack path dependence on inhomogeneities of material microstructure

    Get PDF
    Crack trajectories under different loading conditions and material microstructural features play animportant role when the conditions of crack initiation and crack growth under fatigue loading have to beevaluated. Unavoidable inhomogeneities in the material microstructure tend to affect the crack propagationpattern, especially in the short crack regime. Several crack extension criteria have been proposed in the pastdecades to describe crack paths under mixed mode loading conditions. In the present paper, both the Sihcriterion (maximum principal stress criterion) and the R-criterion (minimum extension of the core plastic zone)are adopted in order to predict the crack path at the microscopic scale level by taking into account microstressfluctuations due to material inhomogeneities. Even in the simple case of an elastic behaviour under uniaxialremote stress, microstress field is multiaxial and highly non-uniform. It is herein shown a strong dependence ofthe crack path on the material microstructure in the short crack regime, while the microstructure of the materialdoes not influence the crack trajectory for relatively long cracks
    • …
    corecore