8,287 research outputs found

    Self-Consistent Cosmological Simulations of DGP Braneworld Gravity

    Full text link
    We perform cosmological N-body simulations of the Dvali-Gabadadze-Porrati braneworld model, by solving the full non-linear equations of motion for the scalar degree of freedom in this model, the brane bending mode. While coupling universally to matter, the brane-bending mode has self-interactions that become important as soon as the density field becomes non-linear. These self-interactions lead to a suppression of the field in high-density environments, and restore gravity to General Relativity. The code uses a multi-grid relaxation scheme to solve the non-linear field equation in the quasi-static approximation. We perform simulations of a flat self-accelerating DGP model without cosmological constant. The results of the DGP simulations are compared with standard gravity simulations assuming the same expansion history, and with DGP simulations using the linearized equation for the brane bending mode. This allows us to isolate the effects of the non-linear self-couplings of the field which are noticeable already on quasi-linear scales. We present results on the matter power spectrum and the halo mass function, and discuss the behavior of the brane bending mode within cosmological structure formation. We find that, independently of CMB constraints, the self-accelerating DGP model is strongly constrained by current weak lensing and cluster abundance measurements.Comment: 21 pages; 10 figures. Revised version matching published versio

    Cosmological Simulations of Normal-Branch Braneworld Gravity

    Full text link
    We introduce a cosmological model based on the normal branch of DGP braneworld gravity with a smooth dark energy component on the brane. The expansion history in this model is identical to LambdaCDM, thus evading all geometric constraints on the DGP cross-over scale r_c. This model can serve as a first approximation to more general braneworld models whose cosmological solutions have not been obtained yet. We study the formation of large scale structure in this model in the linear and non-linear regime using N-body simulations for different values of r_c. The simulations use the code presented in (F.S., arXiv:0905.0858) and solve the full non-linear equation for the brane-bending mode in conjunction with the usual gravitational dynamics. The brane-bending mode is attractive rather than repulsive in the DGP normal branch, hence the sign of the modified gravity effects is reversed compared to those presented in arXiv:0905.0858. We compare the simulation results with those of ordinary LambdaCDM simulations run using the same code and initial conditions. We find that the matter power spectrum in this model shows a characteristic enhancement peaking at k ~ 0.7 h/Mpc. We also find that the abundance of massive halos is significantly enhanced. Other results presented here include the density profiles of dark matter halos, and signatures of the brane-bending mode self-interactions (Vainshtein mechanism) in the simulations. Independently of the expansion history, these results can be used to place constraints on the DGP model and future generalizations through their effects on the growth of cosmological structure.Comment: 17 pages, 10 figures; v2: minor changes; v3: references added; v4: added appendix on comparison with previous results; matches published version; v5: corrected Eqs. (2.4-2.5) and Fig. 1 following Ref. [28]; all following results unchange

    The Statistics of the BATSE Spectral Features

    Get PDF
    The absence of a BATSE line detection in a gamma-ray burst spectrum during the mission's first six years has led to a statistical analysis of the occurrence of lines in the BATSE burst database; this statistical analysis will still be relevant if lines are detected. We review our methodology, and present new simulations of line detectability as a function of the line parameters. We also discuss the calculation of the number of ``trials'' in the BATSE database, which is necessary for our line detection criteria.Comment: 5 pages, 2 figures, AIPPROC LaTeX, to appear in "Gamma-Ray Bursts, 4th Huntsville Symposium," eds. C. Meegan, R. Preece and T. Koshu

    Creating excitonic entanglement in quantum dots through the optical Stark effect

    Full text link
    We show that two initially non-resonant quantum dots may be brought into resonance by the application of a single detuned laser. This allows for control of the inter-dot interactions and the generation of highly entangled excitonic states on the picosecond timescale. Along with arbitrary single qubit manipulations, this system would be sufficient for the demonstration of a prototype excitonic quantum computer.Comment: 4 pages, 3 figures; published version, figure 3 improved, corrections to RWA derive

    Enhanced electron correlations, local moments, and Curie temperature in strained MnAs nanocrystals embedded in GaAs

    Full text link
    We have studied the electronic structure of hexagonal MnAs, as epitaxial continuous film on GaAs(001) and as nanocrystals embedded in GaAs, by Mn 2p core-level photoemission spectroscopy. Configuration-interaction analyses based on a cluster model show that the ground state of the embedded MnAs nanocrystals is dominated by a d5 configuration that maximizes the local Mn moment. Nanoscaling and strain significantly alter the properties of MnAs. Internal strain in the nanocrystals results in reduced p-d hybridization and enhanced ionic character of the Mn-As bonding interactions. The spatial confinement and reduced p-d hybridization in the nanocrystals lead to enhanced d-electron localization, triggering d-d electron correlations and enhancing local Mn moments. These changes in the electronic structure of MnAs have an advantageous effect on the Curie temperature of the nanocrystals, which is measured to be remarkably higher than that of bulk MnAs.Comment: 4 figures, 2 table
    • …
    corecore