20 research outputs found

    A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients

    Get PDF

    The evolution of worker-queen polymorphism in Cataglyphis ants: Interplay between individual-and colony-level selections

    Get PDF
    In many ants, young queens disperse by flying away from their natal nest and found new colonies alone (independent colony founding, ICF). Alternatively, in some species, ICF was replaced by colony fission, in which young queens accompanied by workers found a new colony at walking distance from the mother nest. We compared the queen morphology of Cataglyphis floricola, which disperses by fission, with that of its most likely living ancestor, Cataglyphis emmae, which disperses by ICF. As in other species, the transition from ICF to fission is associated with queen miniaturization. Interestingly, C. floricola presents two types of small queens: brachypters (with short non-functional wings) and ergatoids (worker-like apterous queens). Ergatoids are, on average, 2.8 mg lighter and have half the number of ovarioles than brachypters, which limits the advantage for a colony to produce ergatoids instead of brachypters. Furthermore, more ergatoids are produced than brachypters, but their individual survival rate is lower. During colony fission, 96% of the cocoons containing brachypters but only 31% of those containing ergatoids are transferred to the daughter nests where, after emergence, they compete for becoming the next queen. The remaining queen cocoons, which stay in the mother queen's nest, are eliminated by workers upon emergence, probably to maintain monogyny. This waste of energy suggests that producing ergatoids instead of brachypters is unlikely to increase colony efficiency. We argue that the evolution of ergatoids could derive from a selfish larval strategy, developing into worker-like queens in spite of the colony interest. © 2011 Springer-Verlag.Peer Reviewe

    Orthobunyaviruses: recent genetic and structural insights

    No full text
    Orthobunyaviruses, which have small, tripartite, negative-sense RNA genomes and structurally simple virions composed of just four proteins, can have devastating effects on human health and well-being, either by causing disease in humans or by causing disease in livestock and crops. In this Review, I describe the recent genetic and structural advances that have revealed important insights into the composition of orthobunyavirus virions, viral transcription and replication and viral interactions with the host innate immune response. Lastly, I highlight outstanding questions and areas of future research
    corecore