182 research outputs found

    Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment

    Get PDF
    This review considers the similarities and differences between the physiological systems regulated by gut-derived and neuronally-produced GLP-1. It addresses the questions of whether peripheral and central GLP-1 sources constitute separate, linked, or redundant systems, whether the brain GLP-1 system consists of disparate sections or is a homogenous entity, and it explores the implications of the answers to these questions for the use of GLP-1 receptor agonists as anti-obesity drugs

    Reappraising the role of the vagus nerve in GLP-1-mediated regulation of eating.

    Get PDF
    Here, we provide a focused review of the evidence for the roles of the vagus nerve in mediating the regulatory effects of peripherally and centrally produced GLP-1 on eating behaviour and energy balance. We particularly focus on recent studies which have used selective genetic, viral, and transcriptomic approaches to provide important insights into the anatomical and functional organisation of GLP-1-mediated gut-brain signalling pathways. A number of these studies have challenged canonical ideas of how GLP-1 acts in the periphery and the brain to regulate eating behaviour, with important implications for the development of pharmacological treatments for obesity

    The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation.

    Get PDF
    OBJECTIVE: Knowledge of the cellular mechanisms involved in homeostasis of human squamous oesophagus in the steady state and following chronic injury is limited. We aimed to better understand these mechanisms by using a functional 3D approach. DESIGN: Proliferation, mitosis and the expression of progenitor lineage markers were assessed in normal squamous oesophagus from 10 patients by immunofluorescence on 3D epithelial whole mounts. Cells expressing differential levels of epithelial and progenitor markers were isolated using flow cytometry sorting and characterised by qPCR and IF. Their self-renewing potential was investigated by colony forming cells assays and in vitro organotypic culture models. RESULTS: Proliferation and mitotic activity was highest in the interpapillary basal layer and decreased linearly towards the tip of the papilla (p<0.0001). The orientation of mitosis was random throughout the basal layer, and asymmetric divisions were not restricted to specific cell compartments. Cells sorted into distinct populations based on the expression of epithelial and progenitor cell markers (CD34 and EpCAM) showed no difference in self-renewal in 2D culture, either as whole populations or as single cells. In 3D organotypic cultures, all cell subtypes were able to recapitulate the architecture of the tissue of origin and the main factor determining the success of the 3D culture was the number of cells plated, rather than the cell type. CONCLUSIONS: Oesophageal epithelial cells demonstrate remarkable plasticity for self-renewal. This situation could be viewed as an ex vivo wounding response and is compatible with recent findings in murine models

    Preproglucagon Neurons in the Nucleus of the Solitary Tract are the Main Source of Brain GLP-1, Mediate Stress-Induced Hypophagia, and Limit Unusually Large Intakes of Food

    Get PDF
    Centrally administered glucagon-like peptide-1 (GLP-1) supresses food intake. Here we demonstrate that GLP-1-producing (PPG) neurons in the nucleus tractus solitarii (NTS) are the predominant source of endogenous GLP-1 within the brain. Selective ablation of NTS PPG neurons by viral expression of diphtheria toxin subunit A (DTA) substantially reduced active GLP-1 concentrations in brain and spinal cord. Contrary to expectations, this loss of central GLP-1 had no significant effect on ad libitum feeding of mice, affecting neither daily chow intake nor body weight or glucose tolerance. Only after bigger challenges to homeostasis were PPG neurons necessary for food intake control. PPG-ablated mice increased food intake following a prolonged fast and after a liquid diet preload. Consistent with our ablation data, acute inhibition of hM4Di-expressing PPG neurons did not affect ad libitum feeding, however, it increased post-fast refeeding intake and blocked stress-induced hypophagia. Additionally, chemogenetic PPG neuron activation through hM3Dq caused a strong acute anorectic effect. We conclude that PPG neurons are not involved in primary intake regulation, but form part of a secondary satiation/satiety circuit, activated by both psychogenic stress and large meals. Given their hypophagic capacity, PPG neurons might be an attractive drug target in obesity treatment

    GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract

    Get PDF
    Glutamatergic neurons that express pre‐proglucagon (PPG) and are immunopositive (+) for glucagon‐like peptide‐1 (i.e., GLP‐1+ neurons) are located within the caudal nucleus of the solitary tract (cNTS) and medullary reticular formation in rats and mice. GLP‐1 neurons give rise to an extensive central network in which GLP‐1 receptor (GLP‐1R) signaling suppresses food intake, attenuates rewarding, increases avoidance, and stimulates stress responses, partly via GLP‐1R signaling within the cNTS. In mice, noradrenergic (A2) cNTS neurons express GLP‐1R, whereas PPG neurons do not. In this study, confocal microscopy in rats confirmed that prolactin‐releasing peptide (PrRP)+ A2 neurons are closely apposed by GLP‐1+ axonal varicosities. Surprisingly, GLP‐1+ appositions were also observed on dendrites of PPG/GLP‐1+ neurons in both species, and electron microscopy in rats revealed that GLP‐1+ boutons form asymmetric synaptic contacts with GLP‐1+ dendrites. However, RNAscope confirmed that rat GLP‐1 neurons do not express GLP‐1R mRNA. Similarly, Ca²⁺ imaging of somatic and dendritic responses in mouse ex vivo slices confirmed that PPG neurons do not respond directly to GLP‐1, and a mouse crossbreeding strategy revealed that <1% of PPG neurons co‐express GLP‐1R. Collectively, these data suggest that GLP‐1R signaling pathways modulate the activity of PrRP+ A2 neurons, and also reveal a local “feed‐forward” synaptic network among GLP‐1 neurons that apparently does not use GLP‐1R signaling

    Central and peripheral GLP-1 systems independently suppress eating

    Get PDF
    The anorexigenic peptide glucagon-like peptide-1 (GLP-1) is secreted from gut enteroendocrine cells and brain preproglucagon (PPG) neurons, which, respectively, define the peripheral and central GLP-1 systems. PPG neurons in the nucleus tractus solitarii (NTS) are widely assumed to link the peripheral and central GLP-1 systems in a unified gut–brain satiation circuit. However, direct evidence for this hypothesis is lacking, and the necessary circuitry remains to be demonstrated. Here we show that PPGNTS neurons encode satiation in mice, consistent with vagal signalling of gastrointestinal distension. However, PPGNTS neurons predominantly receive vagal input from oxytocin-receptor-expressing vagal neurons, rather than those expressing GLP-1 receptors. PPGNTS neurons are not necessary for eating suppression by GLP-1 receptor agonists, and concurrent PPGNTS neuron activation suppresses eating more potently than semaglutide alone. We conclude that central and peripheral GLP-1 systems suppress eating via independent gut–brain circuits, providing a rationale for pharmacological activation of PPGNTS neurons in combination with GLP-1 receptor agonists as an obesity treatment strategy

    Re A (A Child) and the United Kingdom Code of Practice for the Diagnosis and Confirmation of Death: Should a Secular Construct of Death Override Religious Values in a Pluralistic Society?

    Get PDF
    The determination of death by neurological criteria remains controversial scientifically, culturally, and legally, worldwide. In the United Kingdom, although the determination of death by neurological criteria is not legally codified, the Code of Practice of the Academy of Medical Royal Colleges is customarily used for neurological (brainstem) death determination and treatment withdrawal. Unlike some states in the US, however, there are no provisions under the law requiring accommodation of and respect for residents’ religious rights and commitments when secular conceptions of death based on medical codes and practices conflict with a traditional concept well-grounded in religious and cultural values and practices. In this article, we analyse the medical, ethical, and legal issues that were generated by the recent judgement of the High Court of England and Wales in Re: A (A Child) [2015] EWHC 443 (Fam). Mechanical ventilation was withdrawn in this case despite parental religious objection to a determination of death based on the code of practice. We outline contemporary evidence that has refuted the reliability of tests of brainstem function to ascertain the two conjunctive clinical criteria for the determination of death that are stipulated in the code of practice: irreversible loss of capacity for consciousness and somatic integration of bodily biological functions

    Identification of multiple transcription initiation, polyadenylation, and splice sites in the Drosophila melanogaster TART family of telomeric retrotransposons

    Get PDF
    The Drosophila non-long terminal repeat (non-LTR) retrotransposons TART and HeT-A specifically retrotranspose to chromosome ends to maintain Drosophila telomeric DNA. Relatively little is known, though, about the regulation of their expression and their retrotransposition to telomeres. We have used rapid amplification of cDNA ends (RACE) to identify multiple transcription initiation and polyadenylation sites for sense and antisense transcripts of three subfamilies of TART elements in Drosophila melanogaster. These results are consistent with the production of an array of TART transcripts. In contrast to other Drosophila non-LTR elements, a major initiation site for sense transcripts was mapped near the 3′ end of the TART 5′-untranslated region (5′-UTR), rather than at the start of the 5′-UTR. A sequence overlapping this sense start site contains a good match to an initiator consensus for the transcription start sites of Drosophila LTR retrotransposons. Interestingly, analysis of 5′ RACE products for antisense transcripts and the GenBank EST database revealed that TART antisense transcripts contain multiple introns. Our results highlight differences between transcription of TART and of other Drosophila non-LTR elements and they provide a foundation for testing the relationship between exceptional aspects of TART transcription and TART's specialized role at telomeres

    The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat

    Get PDF
    5-APB, commonly marketed as ‘benzofury’ is a new psychoactive substance and erstwhile ‘legal high’ which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in ‘head shops’ and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesized that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [125I]RTI-121 and [3H]ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonized by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB’s pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB’s activity at the 5-HT2B receptor may cause cardiotoxicity
    corecore