16 research outputs found

    Codium fragile ssp. fragile (Suringar) Hariot summary document

    Get PDF
    Codium fragile ssp. fragile is a large branching green alga which typically grows between 15 to 60 cm tall but can attain almost 1 m in length and weigh up to 3.5 kg. In wave exposed areas the C. fragile ssp. fragile plants tends to be shorter as they undergo more frequent fragmentation (D’Amours & Scheibling 2007)

    Human Capacity Building for Introduced Marine Pest Monitoring in Western Australia FRDC Report – Project 2009/319 Tactical Research Fund

    Get PDF
    OBJECTIVES: 1. To identify gaps in the Western Australian skill and knowledge base for the monitoring of introduced marine pests. 2. To establish a centralised source of skills and knowledge in W.A. to facilitate the planning, evaluation, and quality control of activities relating to Introduced Marine Pest (IMP) monitoring. 3. To provide an Australian best practice example and knowledge base to facilitate the consistent, effective and efficient implementation of the National Monitoring system for IMPs

    Likelihood of Marine Pest introduction to the Indian Ocean Territories

    Get PDF
    The introduction of new species to environments in which they did not evolve has been widely recognised as one of the top five threats to marine ecosystem function and to biodiversity (Millennium Ecosystem Assessment, 2005)

    Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests

    Get PDF
    Introduced Marine Pests (IMP, = non-indigenous marine species) prevention, early detection and risk-based management strategies have become the priority for biosecurity operations worldwide, in recognition of the fact that, once established, the effective management of marine pests can rapidly become cost prohibitive or impractical. In Western Australia (WA), biosecurity management is guided by the “Western Australian Prevention List for Introduced Marine Pests” which is a policy tool that details species or genera as being of high risk to the region. This list forms the basis of management efforts to prevent introduction of these species, monitoring efforts to detect them at an early stage, and rapid response should they be detected. It is therefore essential that the species listed can be rapid and confidently identified and discriminated from native species by a range of government and industry stakeholders. Recognising that identification of these species requires very specialist expertise which may be in short supply and not readily accessible in a regulatory environment, and the fact that much publicly available data is not verifiable or suitable for regulatory enforcement, the WA government commissioned the current project to collate a reference collection of these marine pest specimens. In this work, we thus established collaboration with researchers worldwide in order to source representative specimens of the species listed. Our main objective was to build a reference collection of taxonomically vouchered specimens and subsequently to generate species-specific DNA barcodes suited to supporting their future identification. To date, we were able to obtain specimens of 75 species (representative of all but four of the pests listed) which have been identified by experts and placed with the WA Government Department of Fisheries and, where possible, in accessible museums and institutions in Australasia. The reference collection supports the fast and reliable taxonomic and molecular identification of marine pests in WA and constitutes a valuable resource for training of stakeholders with interest in IMP recognition in Australia. The reference collection is also useful in supporting the development of a variety of DNA-based detection strategies such as real-time PCR and metabarcoding of complex environmental samples (e.g. biofouling communities). ThePrevention List is under regular review to ensure its continued relevance and that it remains evidence and risk-based. Similarly, its associated reference collection also remains to some extent a work in progress. In recognition of this fact, this report seeks to provide details of this continually evolving information repository publicly available to the biosecurity management community worldwid

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Seagrass landscapes along a wave gradient

    Get PDF
    Seagrasses of southern Western Australia grow in coastal waters exposed to varying degrees of physical exposure from oceanic swell waves and waves created by strong seasonal wind patterns. Seagrass species have preferred niches within these exposures; however knowledge as to how a continuum of exposure effects seagrass distributions and landscape patterns is limited. This thesis examined long term and seasonal variability occurring in a seagrass landscape along a gradient of wave exposure on the North Sands platform, Warnbro Sound, Western Australia. Long term changes to the seagrass landscape were investigated over a 49 year time period. Seagrass areal extent was mapped from aerial photographs and compared through the years. Over the period, 1953 to 2002, there was a 27% loss of seagrass; from 273 ha in 1953 to 200 ha in 2002. Loss was separated into two causes anthropogenic (boat mooring/propeller scars) and natural. Boat mooring/propeller scars accounted for only 2%. The development of a large sand bar, growing from 27 ha to 89 ha, accounted for 66% of the loss. Historical records show a similar large-scale sediment event occurring in Warnbro Sound 170 years ago. Increased fragmentation of offshore seagrass meadows through time accounted for the remaining 32%. To confirm the gradient in exposure, several methods incorporating the effects of time and space were used to characterise water flow. Wind effects were characterised into exposure indices, significant wave heights, bottom flow velocities and surface flows were modelled and in situ flow velocity was measured. Modelling 4 and in-situ measurement of flow velocities showed the shape, bathymetry and topography of Warnbro Sound coupled with seasonal wind patterns, contributed to complex flow circulations within the bay. All flow velocities modelled and measured showed a reduction in flow shorewards. Modelled flows were highest during winter storms whereas wind effects were greatest in summer; due to the consistent and strong summer sea breezes. A comparison of two transects along this flow gradient revealed differences between them. Sediment grain size analyses were used to indicate longer term flow characteristics along the gradient of flow. Sediment profiles were coarser in the offshore exposed sites and finer in the inshore sheltered sites, but there was some modification by the seagrass. A comparison of sediment profiles between two transects along the gradient of flow showed differences. There was also a seasonal influence. Seagrass landscapes were investigated along the gradient. Aerial photographs showed a progressive increase in fragmentation of seagrass meadows from inshore to offshore. Two transects were used, each with five different seagrass landscapes progressing from solid through to fragmented. The two transects could be separated into three zones each. The middle zones were similar in landscape but differed in seagrass species. The inshore and offshore zones were the same, both in species and landscape. Distribution of seagrass species along the two transects was correlated to the flows measured over the transects. There was a relationship between seagrass distribution for the whole platform and wave exposure. 5 Amphibolis spp. occurred in the offshore region that had high flow velocities. Posidonia spp. occurred in the nearshore region that had low flow velocities. Distribution of seagrass species and fragmentation patterns were strongly correlated with wave exposure gradients. A strong correlation (r2 = 0.8) existed in winter between seagrass species (density and landscape) and environmental factors associated with exposure. Despite the strong winds in summer these had minimal effect on the seagrasses (low correlation). Winter flow conditions are therefore the driver of patterns in species distribution and fragmentation seen in the seagrass landscape of Warnbro Sound

    Codium fragile ssp. fragile (Suringar) Hariot summary document

    No full text
    Codium fragile ssp. fragile is a large branching green alga which typically grows between 15 to 60 cm tall but can attain almost 1 m in length and weigh up to 3.5 kg. In wave exposed areas the C. fragile ssp. fragile plants tends to be shorter as they undergo more frequent fragmentation (D’Amours & Scheibling 2007)
    corecore