1,060 research outputs found

    Nature of fault planes in solid neutron star matter

    Get PDF
    The properties of tectonic earthquake sources are compared with those deduced here for fault planes in solid neutron-star matter. The conclusion that neutron-star matter cannot exhibit brittle fracture at any temperature or magnetic field is significant for current theories of pulsar glitches, and of the anomalous X-ray pulsars and soft-gamma repeaters.Comment: 5 AAS LaTeX pages 1 eps figur

    On the correlation between fragility and stretching in glassforming liquids

    Full text link
    We study the pressure and temperature dependences of the dielectric relaxation of two molecular glassforming liquids, dibutyl phtalate and m-toluidine. We focus on two characteristics of the slowing down of relaxation, the fragility associated with the temperature dependence and the stretching characterizing the relaxation function. We combine our data with data from the literature to revisit the proposed correlation between these two quantities. We do this in light of constraints that we suggest to put on the search for empirical correlations among properties of glassformers. In particular, argue that a meaningful correlation is to be looked for between stretching and isochoric fragility, as both seem to be constant under isochronic conditions and thereby reflect the intrinsic effect of temperature

    Einstein's "Zur Elektrodynamik..." (1905) Revisited, with Some Consequences

    Full text link
    Einstein, in his "Zur Elektrodynamik bewegter Korper", gave a physical (operational) meaning to "time" of a remote event in describing "motion" by introducing the concept of "synchronous stationary clocks located at different places". But with regard to "place" in describing motion, he assumed without analysis the concept of a system of co-ordinates. In the present paper, we propose a way of giving physical (operational) meaning to the concepts of "place" and "co-ordinate system", and show how the observer can define both the place and time of a remote event. Following Einstein, we consider another system "in uniform motion of translation relatively to the former". Without assuming "the properties of homogeneity which we attribute to space and time", we show that the definitions of space and time in the two systems are linearly related. We deduce some novel consequences of our approach regarding faster-than-light observers and particles, "one-way" and "two-way" velocities of light, symmetry, the "group property" of inertial reference frames, length contraction and time dilatation, and the "twin paradox". Finally, we point out a flaw in Einstein's argument in the "Electrodynamical Part" of his paper and show that the Lorentz force formula and Einstein's formula for transformation of field quantities are mutually consistent. We show that for faster-than-light bodies, a simple modification of Planck's formula for mass suffices. (Except for the reference to Planck's formula, we restrict ourselves to Physics of 1905.)Comment: 55 pages, 4 figures, accepted for publication in "Foundations of Physics

    Braneworld reheating in the bulk inflaton model

    Full text link
    In the context of the braneworld inflation driven by a bulk scalar field, we study the energy dissipation from the bulk scalar field into the matter on the brane in order to understand the reheating after inflation. Deriving the late-time behavior of the bulk field with dissipation by using the Green's function method, we give a rigorous justification of the statement that the standard reheating process is reproduced in this bulk inflaton model as long as the Hubble parameter on the brane and the mass of the bulk scalar field are much smaller than the 5-dimensional inverse curvature scale. Our result supports the idea that the brane inflation model caused by a bulk scalar field is expected to be a viable alternative scenario of the early universe.Comment: 5 pages, no figures, final version to be published in PR

    Exactly solvable model for cosmological perturbations in dilatonic brane worlds

    Full text link
    We construct a model where cosmological perturbations are analytically solved based on dilatonic brane worlds. A bulk scalar field has an exponential potential in the bulk and an exponential coupling to the brane tension. The bulk scalar field yields a power-law inflation on the brane. The exact background metric can be found including the back-reaction of the scalar field. Then exact solutions for cosmological perturbations which properly satisfy the junction conditions on the brane are derived. These solutions provide us an interesting model to understand the connection between the behavior of cosmological perturbations on the brane and the geometry of the bulk. Using these solutions, the behavior of an anisotropic stress induced on the inflationary brane by bulk gravitational fields is investigated.Comment: 30 pages, typos corrected, reference adde

    Origin of complex crystal structures of elements at pressure

    Full text link
    We present a unifying theory for the observed complex structures of the sp-bonded elements under pressure based on nearly free electron picture (NFE). In the intermediate pressure regime the dominant contribution to crystal structure arises from Fermi-surface Brillouin zone (FSBZ) interactions - structures which allow this are favoured. This simple theory explains the observed crystal structures, transport properties, the evolution of internal and unit cell parameters with pressure. We illustrate it with experimental data for these elements and ab initio calculation for Li.Comment: 4 pages 5 figure

    Godel brane

    Full text link
    We consider the brane-world generalisation of the Godel universe and analyse its dynamical interaction with the bulk. The exact homogeneity of the standard Godel spacetime no longer holds, unless the bulk is also static. We show how the anisotropy of the Godel-type brane is dictated by that of the bulk and find that the converse is also true. This determines the precise evolution of the nonlocal anisotropic stresses, without any phenomenological assumptions, and leads to a self-consistent closed set of equations for the evolution of the Godel brane. We also examine the causality of the Godel brane and show that the presence of the bulk cannot prevent the appearance of closed timelike curves.Comment: Revised version, to match paper published in Phys. Rev.

    The effect of transmucosal 0.2mg/kg Midazolam premedication on dental anxiety, anaesthetic induction and psychological morbidity in children undergoing general anaesthesia for tooth extraction

    Get PDF
    <b>Background:</b> The project aims were to evaluate the benefit of transmucosal Midazolam 0.2mg/kg pre-medication on anxiety, induction behaviour and psychological morbidity in children undergoing general anaesthesia (GA) extractions. <b>Method:</b> 179 children aged 5-10 years (mean 6.53 years) participated in this randomised, double blind, placebo controlled trial. Ninety children had Midazolam placed in the buccal pouch. Dental anxiety was recorded pre operatively and 48 hours later using a child reported MCDAS-FIS scale. Behaviour at anaesthetic induction was recorded and psychological morbidity was scored by the parent using the Rutter Scale pre-operatively and again one-week later. Subsequent dental attendance was recorded at one, three and six months after GA. <b>Results:</b> Whilst levels of mental anxiety did not reduce overall, the most anxious patients demonstrated a reduction in anxiety after receiving midazolam premedicationmay (p=0.01). Neither induction behaviour nor psychological morbidity improved. Irrespective of group, parents reported less hyperactive (p= 0.002) and more prosocial behaviour (p=0.002) after the procedure:;, older children improved most (p=0.048), Post GA Dental attendance was poor and unrelated to after the procedure and unaffected by premedication. <b>Conclusion:</b> 0.2mg/kg buccal Midazolam provided some evidence for reducing anxiety in the most dentally anxious patients. However, induction behaviour, psychological morbidity and subsequent dental attendance were not found to alter between the premedication groups

    Primordial fluctuations in bulk inflaton model

    Full text link
    An inflationary brane model driven by a bulk inflaton with exponential potential is proposed. We find a family of exact solutions that describe power-law inflation on the brane. These solutions enable us to derive exact solutions for metric perturbations analytically. By calculating scalar and tensor perturbations, we obtain a spectrum of primordial fluctuations at the end of the inflation. The amplitudes of scalar and tensor perturbations are enhanced in the same way if the energy scale of the inflation is sufficiently higher than the tension of the brane. Then the relative amplitude of scalar and tensor perturbations is not suppressed even for high-energy inflation. This is a distinguishable feature from the inflation model driven by inflaton on the brane where tensor perturbations are suppressed for high-energy inflation. We also point out that massive Kaluza-Klein modes are not negligible at high-frequencies on 3-space of our brane.Comment: 16 pages, 3 figures, reference adde
    corecore