7 research outputs found

    Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome

    Get PDF
    Artemisinin and its derivatives (collectively referred to as ARTs) rapidly reduce the parasite burden in Plasmodium falciparum infections, and antimalarial control is highly dependent on ART combination therapies (ACTs). Decreased sensitivity to ARTs is emerging, making it critically important to understand the mechanism of action of ARTs. Here we demonstrate that dihydroartemisinin (DHA), the clinically relevant ART, kills parasites via a two-pronged mechanism, causing protein damage, and compromising parasite proteasome function. The consequent accumulation of proteasome substrates, i.e., unfolded/damaged and polyubiquitinated proteins, activates the ER stress response and underpins DHA-mediated killing. Specific inhibitors of the proteasome cause a similar build-up of polyubiquitinated proteins, leading to parasite killing. Blocking protein synthesis with a translation inhibitor or inhibiting the ubiquitin-activating enzyme, E1, reduces the level of damaged, polyubiquitinated proteins, alleviates the stress response, and dramatically antagonizes DHA activity

    A thiol probe for measuring unfolded protein load and proteostasis in cells

    Get PDF
    When proteostasis becomes unbalanced, unfolded proteins can accumulate and aggregate. Here we report that the dye, tetraphenylethene maleimide (TPE-MI) can be used to measure cellular unfolded protein load. TPE-MI fluorescence is activated upon labelling free cysteine thiols, normally buried in the core of globular proteins that are exposed upon unfolding. Crucially TPE-MI does not become fluorescent when conjugated to soluble glutathione. We find that TPE-MI fluorescence is enhanced upon reaction with cellular proteomes under conditions promoting accumulation of unfolded proteins. TPE-MI reactivity can be used to track which proteins expose more cysteine residues under stress through proteomic analysis. We show that TPE-MI can report imbalances in proteostasis in induced pluripotent stem cell models of Huntington disease, as well as cells transfected with mutant Huntington exon 1 before the formation of visible aggregates. TPE-MI also detects protein damage following dihydroartemisinin treatment of the malaria parasites Plasmodium falciparum. TPE-MI therefore holds promise as a tool to probe proteostasis mechanisms in disease.Proteostasis is maintained through a number of molecular mechanisms, some of which function to protect the folded state of proteins. Here the authors demonstrate the use of TPE-MI in a fluorigenic dye assay for the quantitation of unfolded proteins that can be used to assess proteostasis on a cellular or proteome scale

    Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning.

    No full text
    The single transmembrane domain (TMD) of the human thrombopoietin receptor (TpoR/myeloproliferative leukemia [MPL] protein), encoded by exon 10 of the MPL gene, is a hotspot for somatic mutations associated with myeloproliferative neoplasms (MPNs). Approximately 6% and 14% of JAK2 V617F- essential thrombocythemia and primary myelofibrosis patients, respectively, have "canonical" MPL exon 10 driver mutations W515L/K/R/A or S505N, which generate constitutively active receptors and consequent loss of Tpo dependence. Other "noncanonical" MPL exon 10 mutations have also been identified in patients, both alone and in combination with canonical mutations, but, in almost all cases, their functional consequences and relevance to disease are unknown. Here, we used a deep mutational scanning approach to evaluate all possible single amino acid substitutions in the human TpoR TMD for their ability to confer cytokine-independent growth in Ba/F3 cells. We identified all currently recognized driver mutations and 7 novel mutations that cause constitutive TpoR activation, and a much larger number of second-site mutations that enhance S505N-driven activation. We found examples of both of these categories in published and previously unpublished MPL exon 10 sequencing data from MPN patients, demonstrating that some, if not all, of the new mutations reported here represent likely drivers or modifiers of myeloproliferative disease

    An Update on Artemisinin Resistance

    No full text
    International audienceWhile the precise mode of action of artemisinin (ART) derivatives remains obscure, it is nonetheless commonly accepted that ART generates reactive oxygen intermediates that contribute to cell death. Also, numerous studies confirm that point mutations in the propeller domain of K13 protein play a key role in resistance to ART derivatives. Because of its homology with the KEAP1 protein, it is thought that this protein may have a role in the polyubiquitination of proteins and that its alteration may cause resistance of young parasite stages to the drug. In this chapter, we present our current knowledge of K13-related resistance to ART and its spread in Southeast Asia and discuss its possible emergence and/or diffusion in Africa

    Protozoan persister-like cells and drug treatment failure

    No full text
    corecore